Tetration FAQ

Henryk Trappman
Andrew Robbins

January 12, 2008
Contents

1 Introduction 4
 1.1 Classification ... 4
 1.2 Exponentiation ... 4

2 Hyper-operations 6
 2.1 Standard notations .. 7
 2.1.1 Box notations 7
 2.1.2 Arrow notations 8
 2.1.3 Conway’s chain notation 9
 2.1.4 Bowers’ array notation 9
 2.1.5 Steinhaus-Moser notation 10
 2.2 Standard definitions 11
 2.2.1 Hyper-exponentials 11
 2.2.2 Hyper-logarithms 12
 2.2.3 Hyper-powers 12
 2.2.4 Hyper-roots 12
 2.3 Other hyper-operations 12
 2.3.1 Munafo’s lower hyper-operations 12
 2.3.2 Bromer’s mixed hyper-operations 13
 2.3.3 Frappier’s balanced hyper-operations 13
 2.3.4 Robbins’ exponential hyper-operations 13
 2.3.5 Trappmann’s commutative hyper-operations 13
 2.3.6 Trappmann’s binary tree arithmetic 13

3 Iteration theory 14
 3.1 Dynamical systems 14
 3.1.1 Fixed points 14
 3.1.2 Lyapunov number 14
3.2 Functional equations .. 14
 3.2.1 Abel function ... 14
 3.2.2 Schröder function 14
 3.2.3 Böttcher function 14
 3.2.4 Julia function ... 14
3.3 Special matrices .. 14
 3.3.1 Carleman matrix .. 14
 3.3.2 Bell matrix ... 14
 3.3.3 Abel-Robbins matrix 14

4 Tetration .. 15
 4.1 History of tetration .. 16
 4.1.1 Iterated exponentials 17
 4.1.2 Nested exponentials 17
 4.1.3 Exponential forests 18
 4.2 Standard definitions ... 19
 4.2.1 Super-exponentials (tetrational) 20
 4.2.2 Super-logarithms 20
 4.2.3 Super-powers (tetrates) 20
 4.2.4 Super-roots .. 21
 4.2.5 Iterated exponentials 21
 4.2.6 Auxiliary super-roots 22
 4.3 Standard extensions ... 22
 4.3.1 Embedded tetration (Aldrovandi-Helms) 23
 4.3.2 Regular tetration (Schröder-Szekeres-Geisler) 23
 4.3.3 Natural tetration (Abel-Walker-Robbins-Fox) 23
 4.4 Other methods .. 23
 4.4.1 Approximations ... 23
 4.4.2 Ingolf Dahl’s method (fractional) 23
 4.4.3 Jay D. Fox’s method (linear) 23
 4.4.4 Ioannis Galidakis’ method (bump) 23
 4.4.5 Robert Munafo’s method (tower) 24
 4.4.6 Clifford Nelson’s method (recursive) 25
 4.4.7 Andrew Robbins’s method (quadratic) 25
 4.4.8 Peter Walker’s method (iterative) 25
 4.4.9 S. C. Woon’s method (binomial) 25
5 Special Functions

5.1 Named functions

5.1.1 Euler gamma function (factorial)

5.1.2 Barnes G function (super-factorial)

5.1.3 Fox µ function (change of base formula)

5.1.4 Galidakis HW function (hyper-product-logarithm)

5.1.5 Knoebel H function (infinitely iterated exponential)

5.1.6 Lambert W function (product-logarithm)

5.1.7 Munafo class function

5.2 Special cases of exponentials

5.2.1 Decremented exponentials

5.2.2 Product exponentials

5.2.3 Scaled exponentials

5.3 Special cases of tetration

5.3.1 Half-exponential

5.3.2 Self-power

5.3.3 Self-root

5.3.4 Super-sqrt (ssqrt)

5.4 Miscellaneous functions

5.4.1 Exponential commutator

5.4.2 Exponential factorial

5.5 Topological Conjugacy

5.5.1 Exponential-like conjugates

5.5.2 Lambert-like conjugates

A Function symbols

B Tables of values

C Series expansions

D Credits
Chapter 1

Introduction

This FAQ is meant to provide basic understanding about tetration and its related topics. The theme enjoys great popularity among pupils and lay mathematicians. One burning question is: What is the most beautiful/suitable/natural extension of tetration to the real numbers? We see already that this question is slightly outside the realm of mathematics more in the realm of taste. Perhaps this is also the reason why professional mathematicians barely considered this question.

A more mathematical task would be to find one or more uniqueness conditions for a real extension of tetration. However there are none known yet. And so this FAQ also aims to briefly present the various extensions already constructed by various authors in a sense of a fair competition (for appeal to the taste of the reader). [Note however that it will take some time until finished.]

The FAQ shall stop researchers from reinventing the wheel and instead focus their light on undeveloped regions. A special request is to also reveal dead-end ideas, to prevent authors from wasting their efforts there. It is hoped that this FAQ makes research about tetration more effective and fruitful. The FAQ shall be understandable for interested undergraduates. We would really appreciate any suggestion and contribution for improving and extending it.

1.1 Classification

1.2 Exponentiation

Exponentiation Exponentiation is a binary operation on \mathbb{C} defined by:
\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{Table of Values. Exponentiation near singularities can be summarized by:} & \text{ } & \text{ } & \text{ } & \text{ } \\
\hline
\text{ } & \text{ } & \text{ } & \text{ } & \text{ } \\
\hline
\end{array}
\]
Chapter 2

Hyper-operations

Hyper-operations are a generalization of the normal sequence of binary operations that are ubiquitous in mathematics and science. The sequence of binary operations: addition, multiplication, and exponentiation, continues beyond exponentiation [14], but this continuation is not unique. The term hyper-operation refers to any binary operation on N defined recursively in terms of the operations that come before it. There are quite a few continuations of this sequence, and any set that includes these operations can be called a hyper-operation set. It is customary to assign addition to hyper-1 and multiplication to hyper-2, but a different operation succession can result in different operations beyond exponentiation.

The standard hyper-operations use

\[b \uparrow n c = b \uparrow n - 1 (b \uparrow n (c - 1)) \]

(2.1)

as the definition of operation succession, and the operations defined from this form what is called the hyper-operation sequence. A common name for this sequence is the Ackermann function, specifically the three argument version. The Ackermann function can either refer to the 2 or 3 argument versions, defined as

\[A_2(n, m) = (2 \uparrow n (m + 3)) - 3 \]

(2.2)

\[A_3(p, n, m) = p \uparrow \uparrow m \]

(2.3)

respectively. Since the three argument Ackermann function is identical with the standard hyper-operations, we will use the later for both notation and terminology. Another concept is the more general Grzegorczyk or Grzegorczyk-Wainer hierarchy.

The nth hyper-operation is called the hyper-n-operation\(^1\) or hyper-n for short, so hyper-1 is addition, hyper-2 is multiplication, hyper-3 is exponentiation, and so on.

\(^1\)All of these terms can be generalized from hyper-N-term to hyper-term to refer to all ranks.
In 1947, Robert L. Goodstein [15] coined terms for hyper-operations above hyper-3. His terminology borrows from the Greek number prefixes, so hyper-4 is tetration\(^2\), hyper-5 is pentation, hyper-6 is hexation, and so on. In general the hyper- prefix denotes all ranks, and the super- prefix denotes rank 4.

Here is an overview of the terminology used with common hyper-operations:

<table>
<thead>
<tr>
<th>N</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>hyper-N-operation</td>
<td>multiplication</td>
<td>exponentiation</td>
<td>tetratation</td>
</tr>
<tr>
<td>hyper-N-power</td>
<td>multiple</td>
<td>power</td>
<td>tetratre</td>
</tr>
<tr>
<td>hyper-N-exponential</td>
<td>multiple</td>
<td>exponential</td>
<td>tetrational</td>
</tr>
<tr>
<td>hyper-N-root</td>
<td>division</td>
<td>root</td>
<td>super-root</td>
</tr>
<tr>
<td>hyper-N-logarithm</td>
<td>division</td>
<td>logarithm</td>
<td>super-logarithm</td>
</tr>
<tr>
<td>hyper-N-base</td>
<td>factor</td>
<td>base</td>
<td>base</td>
</tr>
<tr>
<td>hyper-N-exponent</td>
<td>factor</td>
<td>exponent</td>
<td>height</td>
</tr>
<tr>
<td>hyper-N-nest</td>
<td>n-ary product</td>
<td>nested exponential</td>
<td>nested tetrational</td>
</tr>
</tbody>
</table>

Although hyper-operations in general are only defined over \(\mathbb{N} \times \mathbb{N}\), the first three are defined over \(\mathbb{C} \times \mathbb{C}\). There are several methods for extending the others’ domains to complex numbers, which will be discussed later.

2.1 **Standard notations**

There are two major kinds of notations in common use for hyper-operations, one uses an arrow (\(\uparrow^n\)) and the other uses a box (\(\square\)). Each notation has at least two variants in common use. The box notation coined by Rubstov and Romerio [31] defines addition as \(b\square c = b + c\). The superscript notation coined by Munafo [27] is identical to box notation, defined as \(b^{(n)}c = b\square^{}c\). The arrow notation coined by Knuth defined the arrow as exponentiation, so is offset from the other notations by two, defined as \(b\uparrow^{n-2}c = b\square^{}c\). The arrow notation coined by Bromer is defined as \(b\uparrow^{n-3}c = b\square^{}c\) being offset by three. Next, we discuss these two versions of arrow notation.

2.1.1 **Box notations**

Rubstov and Romerio coined box notation, which is similar to Munafo’s superscript notation \((b^{(n)}c)\) since it assigns the same operations to the same values of \(n\). Box

\(^2\)Two other terms for tetration are hyper-4 and iterated exponentials. The term \(n\text{th tetrate}\) is rather new; previous terms were \(\text{tower}, \text{hyperpower},\) and \(\text{power tower}\). The term \(\text{tetrational}\) was coined by Holmes as \(\text{antitetrational}\), used in his draft proposal for Composite Arithmetic.
notation allows the notation of both hyper-logarithms and hyper-roots as well, an advantage that has motivated the use of box notation in this work.

\[
a = b \Box c := \begin{cases}
 b + c & \text{if } n = 1, \\
 b & \text{if } n > 1 \text{ and } c = 1, \\
 b^{n-1} b^{\Box (c-1)} & \text{otherwise.}
\end{cases}
\]

\[
b = \root[n]{a} \quad c = b \Box a
\]

The box notation for hyper-roots \(\root[n]{a} \) resembles a lowercase “r” for root, and the box notation for hyper-logarithms \(b \Box a \) resembles an uppercase “L” for log. These notations provide an excellent mnemonic for remembering which is which, and helps with learning the new notation as well.

2.1.2 Arrow notations

There are two variants of arrow notation, Knuth’s and Bromer’s, each of which has some logic behind them. Knuth’s up-arrow notation is defined by:

\[
a = b \uparrow^n c := \begin{cases}
 b^c & \text{if } n = 1, \\
 b & \text{if } n > 1 \text{ and } c = 1, \\
 b \uparrow^{n-1} (b \uparrow^n (c-1)) & \text{otherwise.}
\end{cases}
\]

which means \(b \uparrow c = b^c \) (exponentiation) and \(b \uparrow c = c^b \) (tetration). Knuth’s up-arrow notation is the primary notation used for hyper-operations, also used in [41].

Bromer’s [7] arrow notation, also used by Müller [25], is more general than Knuth’s up-arrow notation. Instead of being restricted to the right-associative iteration of succession \((x + 1)\), it allows either right-associative or left-associative iteration of any binary operation. The Bromer-Müller arrow notation is defined as:

\[
b \uparrow^a c := b A (b A \cdots A (b A b)) \text{ with } c \text{ b’s} \tag{2.4}
\]

\[
b \downarrow^a c := (b A b \cdots b A b)Ab \text{ with } c \text{ b’s} \tag{2.5}
\]

where \(b \uparrow c = c^b \) and \(b \downarrow c = b^{b(c-1)} \) in Bromer’s and Müller’s original usage, whereas \(b \uparrow c = b \downarrow c = b^c \) to simulate Knuth’s notation. Since this allows for two notations for every successive operation, we will use \(b \uparrow c = b^c \), \(b \uparrow \uparrow c = c^b \) and \(b \downarrow \downarrow c = b^{b(c-1)} \) as the convention of keeping the last two arrows pointing in the same direction.

<table>
<thead>
<tr>
<th>(N)</th>
<th>Term</th>
<th>Notation</th>
<th>(N)</th>
<th>Term</th>
<th>Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>hyper-L</td>
<td>(b \downarrow a = b^{b(a-1)})</td>
<td>R</td>
<td>tetration</td>
<td>(b \uparrow \uparrow a = b^{\Box 4}a = \Box 4b)</td>
</tr>
<tr>
<td>LR</td>
<td>hyper-LR</td>
<td>(b \uparrow \uparrow \uparrow a)</td>
<td>RR</td>
<td>pentation</td>
<td>(b \uparrow \uparrow \uparrow a = b^{\Box 3}a)</td>
</tr>
<tr>
<td>LL</td>
<td>hyper-LL</td>
<td>(b \downarrow \downarrow a)</td>
<td>RL</td>
<td>hyper-RL</td>
<td>(b \downarrow \downarrow a)</td>
</tr>
</tbody>
</table>
2.1.3 Conway’s chain notation

Conway’s chained-arrow notation is one of two generalizations of hyper-operations from a ternary operation to an \(n \)-ary operation. It is easy to define this notation in terms of iteration notation \(f^{on}(x) \), because it embeds iteration. In the following definition \(x = a \rightarrow \cdots \rightarrow z \) stands for a partial Conway chain of any length.

\[
\begin{align*}
b \rightarrow c & := b^c \\
x \rightarrow 1 & := x \\
x \rightarrow b \rightarrow c & := CA_{(x; c)}(b) \\
CA_{(x; c+1)}(b) & := CA_{(x; c)}^b(1)
\end{align*}
\]
\((2.6) \)
\((2.7) \)
\((2.8) \)
\((2.9) \)

as you can see, the second-to-last element plays the role of the iterator.

The 3-element Conway chains are equivalent to hyper-operations:

\(b \rightarrow c \rightarrow n = b\uparrow^n c \)
\((2.10) \)

2.1.4 Bowers’ array notation

Jonathan Bowers’ array notations use arrays to store small positive integers that evaluate to a single number. In Bowers’ description [6] of his array notations, he makes little distinction between an array and the evaluation of that array. To make this distinction more clear, parentheses \((a) \) will be used for the array itself, and square brackets \([a] \) will be used for evaluation. Also used is the convention: \(a = \{a_k\}_{k=1}^n \), meaning \(a \) is a sequence with \(n \) elements where the \(k \)th element is written \(a_k \). In his original description of his array notation, he gives five rules. Due to the complexity of rules 4 and 5, they have been broken down as follows.

Let rule4\((a)\) be \(a \) with the following replacements:

\[
\begin{align*}
a_k & \rightarrow a_1 \text{ for } 2 \leq k \leq (j - 2) \\
[a_{a_2 \cdots (a_2 - 1)}] & \rightarrow a_{j - 1} \\
[a_{a_2 \cdots (a_2 - 1)}] & \rightarrow a_{j - 1} - 1
\end{align*}
\]

where \(a_i = 1 \) for \(3 \leq i \leq (j - 1) \) and \(a_j \neq 1 \), (i.e., \(a_j \) is the first non-1 after \(a_3 \)).

Let rule5\((a)\) be \(a \) with the following replacements:

\[
\begin{align*}
[a_{a_2 \cdots (a_2 - 1)}] & \rightarrow a_2 \\
[a_{a_2 \cdots (a_2 - 1)}] & \rightarrow a_3 - 1
\end{align*}
\]
Using *rule4*(a), *rule5*(a), and the array \(a = \{a_k\}_{k=1}^{n} = (a_1, a_2, ..., a_n) \):

\[
[a] = \begin{cases}
a_1 & \text{if } n = 1, \\
a_1 + a_2 & \text{if } n = 2, \\
\{\{a_k\}_{k=1}^{n-1}\} & \text{if } a_n = 1, \\
a_1 & \text{if } a_2 = 1, \\
[\text{rule4}(a)] & \text{if } a_3 = 1, \\
[\text{rule5}(a)] & \text{otherwise.}
\end{cases}
\] (2.11)

is the evaluation of Bowers’ original array notation.

The way this notation is defined, it is equivalent to the hyper-operation sequence for arrays of three elements. Using \(a = (x, y, n) \), the following relationship holds:

\[
[b, c, n] = b \Box^n c
\] (2.12)

In Bowers’ description, he mentions that Chris Bird proved that 4-element Bowers arrays are “comparable” to 4-element Conway chains, but what this means is unclear.

2.1.5 Steinhaus-Moser notation

Hugo Steinhaus coined a notation for large numbers that defined three elements: \(n \) inside a triangle means \(n^n \), \(n \) inside a square means \(n \) inside \(n \) nested triangles, and \(n \) inside a circle means \(n \) inside \(n \) nested squares. Steinhaus’s notation is also called circle notation, due to the fact that it uses a circle for nested squares. Leo Moser then extended this notation by defining \(n \) inside a \(p \)-gon (\(p \) sided polygon) to mean \(n \) inside \(n \) nested \((p - 1) \)-gons. Moser’s extension of Steinhaus’s notation has been called polygon notation. The two forms that are common to both notations are the triangle \(SM_3 \) and the square \(SM_4 \), which are defined by:

\[
SM_3(n) := n^n
\] (2.13)

\[
SM_p(n) := SM_{p-1}^m(n)
\] (2.14)

where \(SM_p^m(n) \) represents an \(n \) inside \(m \) nested \(p \)-gons.

Three very popular large numbers that are defined using this notation are:

- **mega** := \(SM_5(2) \)
- **megiston** := \(SM_5(10) \)
- **Moser’s number** := \(SM_{SM_5(2)}(2) \)
2.2 Standard definitions

Having the ability to calculate hyper-operations is not sufficient for manipulating expressions involving them. In order to do algebraic manipulations, we also need their inverse functions, and the ability to calculate them as well. All hyper-operations have two inverses, hyper-roots and hyper-logarithms. For rank 3, roots are “easier” to find than logarithms, as they can be defined as $\sqrt[1/c]{a} = a^{1/c}$, but for all ranks 4 and above, hyper-logarithms seem to be “easier” to find than hyper-roots.

2.2.1 Hyper-exponentials

A hyper-exponential is a univariate function defined as $f(x) = b[\overline{x}]x$. In order to discuss hyper-exponential functions, it is good idea to extend them to continuous or differentiable functions defined on the real or complex numbers. Although no such an extension has been found, there is a generally accepted framework for discussing such extensions. There are two views of this framework:

Section-based A hyper-exponential is defined as a collection (a sheaf) of series expansions (sections) that all satisfy the operation succession.

Piece-based A hyper-exponential is piecewise-defined by the operation succession and is differentiable across the boundary of its critical piece.

and the results from both approaches are equivalent. So it makes little difference which approach is taken, since they can both produce differentiable extensions.

Given two critical piece functions defined over intervals of length one:

- $HC_{(b,d)}(c)$ defined over $0 \leq b < c < (c_1 = c_0 + 1), d_1 < d < d_0$,
- $HD_{(b,d)}(c)$ defined over $0 \leq b < c < (c_1 = c_0 + 1), d_0 < d < (d_1 = d_0 + 1)$,

the standard hyper-operations may be extended to a ternary operation on \mathbb{R} as:

$$b \overline{\color{red}{\underline{d}} \overline{\color{red}{\underline{c}}}} = \begin{cases} b \overline{d} + 1 \left(b \overline{\overline{d}}(c + 1) \right) \\ HD_{(b,d)}(c) \end{cases}$$

$$\begin{cases} \frac{d-1}{b} b \overline{\overline{d}}(c + 1) \\ HC_{(b,d)}(c) \end{cases}$$

$$\begin{cases} b \overline{d} - 1 \left(b \overline{\overline{d}}(c - 1) \right) \\ HC_{(b,d)}(c) \end{cases}$$

where the functions that best define $HC_{(b,d)}(c)$ and $HD_{(b,d)}(c)$ remain unknown. This definition effectively pushes all values within the domains of the critical pieces, thus reducing the domain of interpolation.
2.2.2 Hyper-logarithms

A hyper-logarithm is the inverse function of a hyper-exponential. The extension of hyper-exponentials to \mathbb{R} requires the extension of hyper-logarithms to \mathbb{R} as well.

Given the inverse functions of the critical piece functions above:

\[
\begin{align*}
\frac{d}{b} a &= \begin{cases}
 \left(\frac{d}{b} \frac{d+1}{a} - 1 \right) & \text{if } 0 \leq d < d_0 \\
 HD_{(b,d)}^{-1}(a) & \text{if } d_0 \leq d \leq d_1 \\
 HC_{(b,d)}^{-1}(a) & \text{if } (b \frac{d}{d_0} c_0) \leq a \leq (b \frac{d}{d_1} c_1) \\
 \left(\frac{d}{b} \frac{d-1}{a} + 1 \right) & \text{if } d > d_1
\end{cases}
\end{align*}
\]

which completes the framework for extension of hyper-operations to real numbers.

Here is an example of an extension for $c_0 = 0$ and $d_0 = 2$:

\[
\begin{align*}
HC_{(b,d)}(c) &\approx b^c \quad (2.15) \\
HD_{(b,d)}(c) &\approx bc \cos^2 \left(\frac{d\pi}{2} \right) + b^c \sin^2 \left(\frac{d\pi}{2} \right) \quad (2.16)
\end{align*}
\]

where the square indicates a power, not an iterate.

2.2.3 Hyper-powers

A hyper-power is a univariate function defined as $f(x) = x^n c$.

2.2.4 Hyper-roots

A hyper-root is the inverse function of a hyper-power.

2.3 Other hyper-operations

All this time we have been talking about the standard right-associative hyper-operations. If we instead look at left-associative or even balanced iteration for the definition of operation succession, then we get different sets of hyper-operations.

2.3.1 Munafo’s lower hyper-operations

\[
b_{(n)c} := (b_{(n)}(c - 1))(n-1)c
\]

TODO
2.3.2 Bromer’s mixed hyper-operations
TODO

2.3.3 Frappier’s balanced hyper-operations
\[HF_n(b, c) := (x \mapsto HF_{n-1}(x, x))^{\log_2(c)}(b) \]
(2.18)
TODO

2.3.4 Robbins’ exponential hyper-operations
\[HR_n(b, c) = \exp(e^{HR_{n-1}(\log_e(b), \exp_{e^{n-3}}(c))}) \]
(2.19)
TODO

2.3.5 Trappmann’s commutative hyper-operations
\[HT_n(b, c) = \exp(e^{HT_{n-1}(\log_e(b), \log_e(c))}) \]
(2.20)
TODO

2.3.6 Trappmann’s binary tree arithmetic
TODO
Chapter 3

Iteration theory

3.1 Dynamical systems
3.1.1 Fixed points
3.1.2 Lyapunov number

3.2 Functional equations
3.2.1 Abel function
3.2.2 Schröder function
3.2.3 Böttcher function
3.2.4 Julia function

3.3 Special matrices
3.3.1 Carleman matrix
3.3.2 Bell matrix
3.3.3 Abel-Robbins matrix
Chapter 4

Tetration

Question 4.1. What is repeated exponentiation?

Repeated addition is multiplication, repeated multiplication is exponentiation, so is the next one repeated exponentiation? No. The difficulty is that exponentiation is not associative, so we have to chose a bracketing scheme. Right bracketing gives the hyper-operations, left bracketing gives lower hyper-operations, balanced bracketing gives balanced hyper-operations, and mixed bracketing gives mixed hyper-operations.

Question 4.2. What is iterated exponentiation?

Exponentiation (\uparrow) is a binary function, so there are two ways of iterating it. ($\uparrow c$) is a function from x to x^c, which is called a power function. An iterated power function gives $(\uparrow c)^n(x) = ((x^c)^c)^c \ldots ^c = x^{c^n}$. For the other way, ($b \uparrow$) is a function from x to b^x, which is called an exponential function. An iterated exponential function gives $(b \uparrow)^n(x)$ which is not expressible in any standard closed form.

Question 4.3. What is a to the bth power c times?

It depends on interpretation, since this is unclear. Assuming b is repeated c times:

- If it means: $((a \uparrow b) \uparrow \cdots \uparrow b) \uparrow b = a^{b^c}$ then it is iterated powers
- If it means: $((b \uparrow b) \uparrow \cdots \uparrow b) \uparrow a = (b^{b^{b-1}})^a$ then it is a power of iterated powers
- If it means: $a \uparrow (b \uparrow \cdots \uparrow (b \uparrow b)) = a^{(cb)}$ then it is an exponential of tetration
- If it means: $b \uparrow (b \uparrow \cdots \uparrow (b \uparrow a)) = \exp_b(a)$ then it is iterated exponentials

and as always, it is better to be more clear, since there are so many interpretations.
Question 4.4. What is tetration?

Tetration is an *iterated exponential*, a function (on $\mathbb{C} \times \mathbb{N} \to \mathbb{C}$) defined as

$$n^x := \underbrace{x \times \cdots \times x}_n \quad (4.5)$$

where n is called the **height** and x is called the **base**. In 1947, R. L. Goodstein coined the term *tetration*, along with terms for higher operations: *pentation*, *hexation*, and so on, giving each right-associative hyper-operations a short name.

Question 4.6. What is the infinitely iterated exponential?

Tetration usually arises in the study of fixed points of exponential functions. Fixed points satisfy $f(x_0) = x_0$, so fixed points of exponential functions would satisfy $\exp_b(c) = b^c = c$. Replacing c in the equation $c = b^c$ gives $c = b^{b^c}$ and repeating this gives $c = \exp_b^\infty(c)$. To eliminate the c we continue indefinitely to get $c = \exp_b^\infty(x)$ and if c is an attracting fixed point, then it doesn’t matter what x is, so this can be written $c = \infty b$. Taking the cth root of the original equation gives $c^{1/c} = b$ meaning the **infinitely iterated exponential** ∞x is the inverse function of $x^{1/x}$. For more information, see the Knoebel H-function in the chapter on special functions.

Question 4.7. How is tetration written?

Tetration can be represented in various other notations as:

$$x^{x^{x^{\cdots}}} = n^x \quad \text{(Maurer’s left-superscript notation)}$$
$$= x \uparrow \uparrow n \quad \text{(Romerio’s box notation)}$$
$$= x \uparrow \uparrow n \quad \text{(Knuth’s up arrow notation)}$$
$$= (x \to n \to 2) \quad \text{(Conway’s chained arrow notation)}$$
$$= \exp_b^n(1) \quad \text{(iterated exponential notation)}$$
$$= \prod_{k=1}^n x = T^n x \quad \text{(nested exponential notation)}$$

4.1 History of tetration

The history of tetration starts with Euler, Eissenstein, Goodstein, Maurer, Lambert, and many other people, depending on which aspect of tetration one is considering. Also, various functions related to tetration, such as iterated exponentials and nested exponentials have been developed by different people at different times.
4.1.1 Iterated exponentials

Question 4.8. How are iterated exponentials written?

Iterated exponentials can be represented in various notations as:

\[b^{b^{\cdots^{b^x}}}} = \exp^n b(x) \quad \text{(Euler’s mnemonic notation)} \]
\[= n(b, x) \quad \text{(Galidakis’ notation)} \]
\[= n^b x \quad \text{(Robbins’ notation)} \]
\[= b^{[n]}(x) \quad \text{(Campagnolo et.al. notation)} \]
\[= \prod_{k=1}^{n} (b; x) = T^n(b; x) \quad \text{(nested exponential notation)} \]

4.1.2 Nested exponentials

Question 4.9. How are nested exponentials written?

Nested exponentials can be represented as:

\[a^{a^{\cdots^{a^{a_n}}}}} = T(a_1, a_2, \cdots, a_{n-1}, a_n) \quad \text{(Barrow-Brunson notation)} \]
\[= \prod_{k=1}^{n} (a_k; a_n) \quad \text{(Barrow-Shell notation)} \]
\[= \prod_{k=1}^{n} a_k \quad \text{(Barrow’s notation)} \]

Historical notations and terminology

- D. F. Barrow uses the notation \(E(a_1, a_2, a_3, \cdots, a_n) = \prod_{k=1}^{n} a_k \) and the notation \(E_{k=1}^\infty a_k = \prod_{k=1}^{\infty} a_k \) where he coins the term infinite exponentials along with many others including the nth margerin function for \(z \mapsto \prod_{k=1}^{n} (a_k; z) \) in [4].

- D. L. Shell uses most of Barrow’s terms, the notation \(E(a; z) = \exp_{a}^\infty (z) \) and the notation \(E(a_1, a_2, a_3, \cdots; z) = \prod_{k=1}^{\infty} (a_k; z) \) in [?]

- W. J. Thron uses the notation \(T_n(z) = \prod_{k=1}^{n} (e^{a_k}; z) \) in [34].

- G. Bachman uses the notations \(E_n = [a_1, a_2, a_3, \cdots, a_n] = \prod_{k=1}^{n} a_k \) in [?].

- X. Dong uses the notation \(E_{\lambda_1, \cdots, \lambda_n}(z) = \prod_{k=1}^{n} (e^{\lambda_k}; z) \) in [?].

- B. W. Brunson uses the notation \(T(a_1, a_2, a_3, \cdots, a_n) = \prod_{k=1}^{n} a_k \) in [?].
• V. I. Yukalov and S. Gluzman use $F_n(t, \tau) = a_0 \prod_{k=1}^{n} \left(e^{a_k / a_{k-1}} \right)$ in [?].

• S. Sykora uses the notations $E_{\pm}^n(x) = \{ b_1 b_2 b_3 \cdots | x \} = \prod_{k=0}^{\infty} (\beta^{2b_k-1}; x)$ where $b_k \in \{0, 1\}$ and uses the term binary iterated powers (misnomer) in [33]. Its acronym bips sounds nice, though, so it might be used instead.

• N. J. A. Sloane uses the term tower of height n for $\prod_{k=1}^{n} a_k$ in [32].

Using Barrow’s terms, Shell, Thron, Dong, Sykora, and Yukalov et.al. are actually discussing margerin exponential functions, although they do not say so explicitly. This provides counter examples for the argument that nested exponentials are too rare to deserve a notation. Clearly, this list would indicate otherwise.

Although E is more commonly used than T, it is easily mistaken for Σ, especially when they appear together (for example: $E \Sigma T \Pi$), where it can be seen that it is much easier to mistake E for Σ than it is to mistake T for Π. It is for this reason that we use T in this FAQ instead of E.

4.1.3 Exponential forests

There is a problem posted on a wall of the math club at the University of Maryland, by the author Andrew Snowden. He apparently teaches both there and at Princeton, and poses many interesting problems in mathematics. The problem set was simply called Some More Problems, and contained problems from algebra and number theory to real and complex analysis. The second problem posted seemed interesting, as it related to nested exponentials, so it will be reproduced here:

A natural nummber n may be factored as $n = p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n}$ where the p_n are distinct prime numbers and a_n are natural numbers. Since the a_n are natural numbers, they may be factored in such a manner as well. This process may be continued, building a “factorization tree” until all the top numbers are 1. Thus any question that can be asked of trees (i.e. the height of a tree, the number of nodes in a tree, etc.) may be asked of our natural number n. This problem is about the height of n which we denote $h(n)$. Define:

$$D_n = \lim_{N \to \infty} \frac{1}{N} \left| \{ k \leq N : h(k) \geq n \} \right|$$

D_n is sort of the density of numbers with height at least n. It is obvious that $D_1 = 1$ since all numbers have height at least 1.
1. Show that
\[\frac{1}{2} < (\text{^2}D_n) \leq 3 \]

2. Let \(a \) be the average height of a natural number (i.e. if you were to pick many numbers at random their height would average out to \(a \)).
Using the previous part and other methods, give bounds on \(a \). The best bounds [Andrew Snowden has found] are

\[1.42333 < a < 1.4618 \quad (4.10) \]

Here are some examples of prime factorization trees as suggested by Snowden:

<table>
<thead>
<tr>
<th>Number</th>
<th>Factorization</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2^2</td>
</tr>
<tr>
<td>8</td>
<td>2^3</td>
</tr>
<tr>
<td>9</td>
<td>3^2</td>
</tr>
<tr>
<td>12</td>
<td>2^2 \cdot 3</td>
</tr>
<tr>
<td>16</td>
<td>2^4</td>
</tr>
<tr>
<td>48</td>
<td>2^4 \cdot 3</td>
</tr>
<tr>
<td>64</td>
<td>2^6</td>
</tr>
<tr>
<td>81</td>
<td>3^4</td>
</tr>
<tr>
<td>144</td>
<td>2^4 \cdot 3^2</td>
</tr>
<tr>
<td>4096</td>
<td>2^{12}</td>
</tr>
<tr>
<td>65536</td>
<td>2^{16}</td>
</tr>
<tr>
<td>531441</td>
<td>3^{12}</td>
</tr>
<tr>
<td>7625597484987</td>
<td>3^{33}</td>
</tr>
</tbody>
</table>

4.2 Standard definitions

Most of the standard definitions of tetration define it recursively:

\[^1x := x \quad (4.11) \]
\[^{n+1}x := x^{(n)x} \quad (4.12) \]

such that tetration is only defined for natural number \(n \). There are extensions of tetration beyond this domain, but each has a specific domain of applicability. For all complex number \(x \) within the Shell-Thron region, one can use regular iteration, and for all complex number \(x \) with real part greater than 1, one can use natural iteration, but for other bases, no extension has been found.
4.2.1 Super-exponentials (tetrationals)

Definition 4.13. The base-\(b \) tetrational function is \(x \mapsto x^b \).

For some bases, no fancy methods are required, for example, base 0 and base 1. For base-0 tetrational functions,

4.2.2 Super-logarithms

Definition 4.14. The base-\(b \) super-logarithm is the inverse of the base-\(b \) tetran- tional.

Using the third interpretation of super-logarithms (i.e. the number of times you must apply a logarithm before one is obtained), we can define integer versions as:

\[
\lfloor \text{slog}_b(x)(z) \rfloor = \begin{cases}
-2 & \text{if } z < 0, \\
\lfloor \text{slog}_b(x)(\log_b(z)) \rfloor + 1 & \text{if } z \geq 0.
\end{cases}
(4.15)
\]

\[
\lceil \text{slog}_b(x)(z) \rceil = \begin{cases}
-1 & \text{if } z \leq 0, \\
\lceil \text{slog}_b(x)(\log_b(z)) \rceil + 1 & \text{if } z > 0.
\end{cases}
(4.16)
\]

4.2.3 Super-powers (tetrates)

Definition 4.17. The \(n \)-th tetrate function is \(x \mapsto {}^n x \).

Theorem 4.18 (Galidakis). For \(x \in \mathbb{C} \) and \(0 \leq n \in \mathbb{Z} \):

\[
{}^n x = \sum_{k=0}^{\infty} p_{nk} \log(x)^k
(4.19)
\]

where:

\[
p_{nk} = \begin{cases}
1 & \text{if } n \geq 0 \text{ and } k = 0, \\
0 & \text{if } n = 0 \text{ and } k > 0, \\
\frac{1}{k!} & \text{if } n = 1,
\end{cases}
(4.20)
\]

otherwise:

\[
p_{nk} = \frac{1}{k} \sum_{j=1}^{k} j p_{n-k-j} p_{n-1}(j-1)
(4.21)
\]

and Galidakis gives the recurrence equation (4.21) in [?].
Theorem 4.22 (Robbins). For $x \in \mathbb{C}$ and $0 \leq n \in \mathbb{Z}$:

$$n_x = \sum_{k=0}^{\infty} t_{nk}(x - 1)^k$$ \hspace{1cm} (4.23)

where:

$$t_{nk} = \begin{cases}
1 & \text{if } n \geq 0 \text{ and } k = 0, \\
0 & \text{if } n = 0 \text{ and } k > 0, \\
1 & \text{if } n = 1 \text{ and } k = 1, \\
0 & \text{if } n = 1 \text{ and } k > 1
\end{cases}$$ \hspace{1cm} (4.24)

otherwise:

$$t_{nk} = \frac{1}{k} \sum_{j=1}^{k} \sum_{i=j}^{k} i(-1)^{j-1} t_{n(k-i)} t_{(n-1)(i-j)}$$ \hspace{1cm} (4.25)

4.2.4 Super-roots

Definition 4.26. The n-th super-root is $\text{srt}_n(z) = x$ if and only if $n_x = z$.

A super-root is an inverse function of tetration, or to be more specific, the inverse of a hyperpower function.

Before we can go into more detail about series expansions of super-roots, we must first recall the process of finding a power series for an inverse function, given a power series for the function itself. This process is called Lagrange inversion [?] (sometimes confused with Lagrange reversion). Lagrange inverse series:

4.2.5 Iterated exponentials

Definition 4.27. The n-th base-b iterated exponential is $\exp^n_b(x)$.

Generally speaking, there are three variables in a iterated exponential, so there are at least three different ways of forming a power series expansion of them. For series expansions of $\exp^n_b(a)$, series about $a = (\infty b)$ are usually discussed in regular iteration, and series about $c = 0$ are usually discussed in natural iteration but series in b are specific to tetration, so these expansions are covered here.

Theorem 4.28 (Galidakis). For $x \in \mathbb{C}$, $z \in \mathbb{C}$ and $0 \leq n \in \mathbb{Z}$:

$$n(x; z) = \sum_{k=0}^{\infty} p_{nk}(z) \log(x)^k$$ \hspace{1cm} (4.29)
where:

\[
p_{nk}(z) = \begin{cases}
1 & \text{if } n > 0 \text{ and } k = 0, \\
z & \text{if } n = 0 \text{ and } k = 0, \\
0 & \text{if } n = 0 \text{ and } k > 0, \\
\frac{k^k}{k!} & \text{if } n = 1, \\
\end{cases} \quad (4.30)
\]

otherwise:

\[
p_{nk}(z) = \frac{1}{k} \sum_{j=1}^{k} j p_{n-j}(z) p_{n-1}(j-1)(z) \quad (4.31)
\]

Theorem 4.32 (Robbins). For \(x \in \mathbb{C} \), \(z \in \mathbb{C} \) and \(0 \leq n \in \mathbb{Z} \):

\[
^n(x; z) = \sum_{k=0}^{\infty} t_{nk}(z)(x-1)^k \quad (4.33)
\]

where:

\[
t_{nk}(z) = \begin{cases}
1 & \text{if } n > 0 \text{ and } k = 0, \\
z & \text{if } n = 0 \text{ and } k = 0, \\
0 & \text{if } n = 0 \text{ and } k > 0, \\
\binom{z}{k} & \text{if } n = 1, \\
\end{cases} \quad (4.34)
\]

otherwise:

\[
t_{nk}(z) = \frac{1}{k} \sum_{j=1}^{k} 1 \sum_{i=j}^{k} i(-1)^{i-j} t_{n-k}(z) t_{n-1}(i-j)(z) \quad (4.35)
\]

4.2.6 Auxiliary super-roots

Definition 4.36. The \(n \)-th super-root from \(x \) is \(\text{srt}_n(z; x) = b \) where \(z = \exp_n^b(x) \).

For more information about auxiliary super-roots, see appendix C.

4.3 Standard extensions

The reason why two extensions of tetration are singled out is that neither of these are extensions of tetration but methods of iteration. Since both regular iteration and natural iteration apply to almost any function, they are very powerful tools outside of tetration, and they also apply to tetration quite well. To compare these methods, regular tetration is a power series expansion in the initial/top/auxiliary exponent, while natural tetration is a power series expansion in the height.
4.3.1 Embedded tetration (Aldrovandi-Helms)
TODO

4.3.2 Regular tetration (Schröder-Szekeres-Geisler)
TODO

4.3.3 Natural tetration (Abel-Walker-Robbins-Fox)

4.4 Other methods

4.4.1 Approximations
TODO

4.4.2 Ingolf Dahl’s method (fractional)
TODO

4.4.3 Jay D. Fox’s method (linear)
TODO

4.4.4 Ioannis Galidakis’ method (bump)
The second extension Galidakis gives in [?] is defined as follows.

Definition 4.37 (Galidakis). If $x \in \mathbb{C}$ and $y \in \mathbb{R}$:

\[y^x \approx IG(x, y) = \sum_{k=0}^{\infty} \alpha_k(y) \log(x)^k \]

(4.38)

where:

\[\alpha_k(y) = \begin{cases} 1 & \text{if } k = 0, \\ \int_0^y \sum_{j=1}^k \frac{(P_j - P_{j-1})f(y-j+\frac{1}{2})}{\int_{s-j+\frac{1}{2}}^s f(s)ds} \, ds \, dt & \text{otherwise.} \end{cases} \]

(4.39)

and:

\[f(x) = \begin{cases} \exp\left(\frac{4}{4x^2-1}\right) & \text{if } |x| < 1/2, \\ 0 & \text{otherwise.} \end{cases} \]

(4.40)
and:

\[
P_{nk} = \begin{cases}
1 & \text{if } n \geq 0 \text{ and } k = 0, \\
0 & \text{if } n = 0 \text{ and } k > 0, \\
\frac{1}{k!} & \text{if } n = 1,
\end{cases}
\]
(4.41)

otherwise:

\[
P_{nk} = \frac{1}{k} \sum_{j=1}^{n} j P_{n(k-j)} P_{(n-1)(j-1)}
\]
(4.42)

One advantage of (IG) is that it utilizes (4.42), a remarkable recurrence equation, but uses a bump function in (4.40) that seems unnatural.

4.4.5 Robert Munafo’s method (tower)

Munafo’s extension of tetration is a nested exponential, which can be expressed in terms of the \(n\)-ary exponential notation introduced in an earlier chapter.

\[
g(x, z) = x^{\frac{1}{2}(1+\text{erf}(2z-1))}
\]
(4.43)

\[
g_0(x, y, n) = \prod_{k=\lfloor -n \rfloor}^{0} g(x, y + k)
\]
(4.44)

\[
g_1(x, y) = \lim_{n \to \infty} g_0(x, y, n)
\]
(4.45)

\[
g_2(x, y, m) = \log_x^m (g_1(x, y + m))
\]
(4.46)

\[
g_3(x, y) = \lim_{m \to \infty} g_2(x, y, m)
\]
(4.47)

\[
RM(x, y) = g_3(x, y + K(x))
\]
(4.48)

\[
yx \approx RM(x, y)
\]
(4.49)

where \(K(x)\) is a number such that \(RM(x, 1) = x\). Summarizing:

\[
yx \approx RM(x, y) = \lim_{m \to \infty} \log_x^m \left(\lim_{n \to \infty} \prod_{k=\lfloor -n \rfloor}^{0} x^{\frac{1}{2}(1+\text{erf}(2(y+k+m+K(x))-1))} \right)
\]
(4.50)

Nelson’s and Munafo’s extensions are unique in that they do not immediately imply a series expansion, but Galidakis’ and Geisler’s extensions are series expansions, so we can (in theory) compare them, along with other approximations.
4.4.6 Clifford Nelson’s method (recursive)

In a conversation posted in the Math Atlas [28], Clifford Nelson and Seth Russell discuss the extension of hyper-operations using a recursive definition that allows non-integer hyper-exponents to be calculated through hyper-logarithms. In this conversation, Nelson defines a transform of a function \(f(x, y) \) as follows:

\[
CN[f](x, y)_n = \begin{cases}
1 & \text{if } x = 0, \\
1 & \text{if } y = 0, \\
1 & \text{if } x = y, \\
x & \text{if } y = 1, \\
c & \text{if } n = 0 \text{ for any } c, \\
1 + CN[f](f(x, y), y)_{n-1} & \text{if } x \geq y, \\
1/CN[f](y, x)_{n-1} & \text{if } x < y
\end{cases}
\] (4.51)

He then shows the following (using \(c = 1 \) for example):

\[
CN_{xy}[x - y](x, y)_{\infty} = x/y
\] (4.52)
\[
CN_{xy}[x/y](x, y)_{\infty} = \log_y(x)
\] (4.53)
\[
CN_{xy}[\log_y(x)](x, y)_{\infty} \approx \text{slog}_y(x)
\] (4.54)
\[
CN_{xy}[\text{slog}_y(x)](x, y)_{\infty} \approx \frac{y}{x}
\] (4.55)

where the convention \(CN_{xy}[f(x, y)] = CN[f] \) is used. So, Nelson’s transform uses a hyper-\(n \)-logarithm \(f(x, y) \) to find the hyper-(\(n + 1 \))-logarithm. The problem with this method, however, is that the super-logarithm obtained is not continuous.

4.4.7 Andrew Robbins’s method (quadratic)

TODO

4.4.8 Peter Walker’s method (iterative)

TODO

4.4.9 S. C. Woon’s method (binomial)

TODO
Chapter 5

Special Functions

Most texts about special functions usually consider: Airy, Bessel, Chebyshev, and Lagendre functions, but here we will consider a different set of special functions. Instead of considering special functions that are the solutions of differential equations (as most are), we will be considering functions such as x^x.

Unlike the functions that are represented by single letters (like f or W) or perhaps 3 letter lowercase mnemonics (like exp, log, sin, cos, ...), this FAQ uses a wide variety of two letter uppercase mnemonics. Here is an overview of some of the symbols used in this FAQ, for more, see appendix A. The new terminologies introduced in this FAQ are indicated in bold, even if there is one another place it has been used before.

<table>
<thead>
<tr>
<th>Sym.</th>
<th>Function Name</th>
<th>Forms</th>
<th>Inverse</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE_e</td>
<td>base-e product-exponential</td>
<td>xe^x</td>
<td>$W(x)$</td>
<td>-1</td>
<td>∞</td>
</tr>
<tr>
<td>W</td>
<td>Lambert W function</td>
<td>$W(x)$</td>
<td>xe^x</td>
<td>$-1/e$</td>
<td>∞</td>
</tr>
<tr>
<td>SP</td>
<td>self-power</td>
<td>$x^x = \frac{2}{3}x$</td>
<td>$x^{\frac{3}{4}x}$</td>
<td>$\frac{3}{4}x$</td>
<td>$1/e$</td>
</tr>
<tr>
<td>SR</td>
<td>self-root</td>
<td>$x^{\frac{1}{1}} = \sqrt{x} = \frac{\infty}{x}$</td>
<td>e^x</td>
<td>0</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>reciprocal self-power</td>
<td>$x^{-x} = \frac{1}{x^x} = (1/x)^x$</td>
<td>$x_{1/\infty} = (1/x)^{1/x}$</td>
<td>$\frac{1}{\infty}x$</td>
<td>∞</td>
</tr>
<tr>
<td></td>
<td>reciprocal self-root</td>
<td>$x^{-1/x} = (1/x)^{(1/x)}$</td>
<td>e^x</td>
<td>0</td>
<td>e</td>
</tr>
<tr>
<td>$ssqrt$</td>
<td>super-sqrt</td>
<td>$\frac{2}{3}x = 1/\infty(1/x)$</td>
<td>$\frac{1}{\infty}x = 1/\infty 1/x$</td>
<td>x^x</td>
<td>$e^{-1/e}$</td>
</tr>
<tr>
<td>H</td>
<td>Knoebel H function</td>
<td>$x^{\frac{1}{1}} = \sqrt{x} = \frac{\infty}{x}$</td>
<td>$x_{1/\infty} = (1/x)^{1/x}$</td>
<td>$e^{x^{1/\infty}}$</td>
<td>0</td>
</tr>
<tr>
<td>EC</td>
<td>exponential commutator</td>
<td>$EC(x) = \infty(1/x^{1/\infty})$</td>
<td>$EC(x)$</td>
<td>∞</td>
<td>1</td>
</tr>
<tr>
<td>EF</td>
<td>exponential factorial</td>
<td>$EF(x) = x^{EF(x^{1/\infty})}$</td>
<td>$EF(x)$</td>
<td>-1</td>
<td>∞</td>
</tr>
</tbody>
</table>

This chapter is supposed to be the most complete reference about these functions, if the information is scarce. For example, the gamma function is ubiquitous, so its discussion will be brief, but the super-sqrt is more rare (being found mostly in the work of Rubstov and Romerio) so for this, we provide a more complete treatise.
5.1 Named functions

5.1.1 Euler gamma function (factorial)

Definition 5.1. The Euler Γ function is

$$\Gamma(z + 1) := \int_0^\infty t^z e^{-t} dt$$

![Figure 5.1: Plot of $\Gamma(x)$ (invertible, real, imaginary)](image)

The gamma function is the unique solution to:

$$\begin{cases}
\Gamma(1) = 1 \\
\Gamma(z + 1) = z\Gamma(z) \quad \forall z \in \mathbb{C} \\
\frac{\rho^2}{dz^2} \log \Gamma(z) \geq 0 \quad \forall z > 0
\end{cases} \quad (5.2)$$

The gamma function is very well known, but mostly as the analytic continuation of the factorial, meaning it extends the following product to complex n:

$$n! = \prod_{k=1}^n k = \Gamma(n + 1) \quad (5.3)$$
5.1.2 Barnes G function (super-factorial)

Definition 5.4. The Barnes G function is

$$G(z + 1) := \sqrt{(2\pi)^z \exp (z + z^2(1 + \gamma))} \prod_{n=1}^{\infty} \left[(1 + \frac{z}{n})^n \exp \left(\frac{z^2}{2n} - z \right) \right]$$

![Figure 5.2: Plot of $G(x)$ (invertible, real, imaginary)](image)

Another definition is $G(z+1) = \exp (z \log \Gamma(z) + \zeta'(-1) - \zeta'(-1, z))$ where $\zeta(t, z)$ is the Hurwitz zeta function, and $\zeta'(t, z) = \frac{d}{dt}(t, z)$.

The Barnes G function is the unique solution to:

$$
\begin{align*}
G(1) &= 1 \\
G(z + 1) &= \Gamma(z)G(z) \quad \forall z \in \mathbb{C} \\
\frac{d^3}{dz^3} \log G(z) &\geq 0 \quad \forall z > 0
\end{align*}
$$

(5.5)

The Barnes G function extends the following product to complex n:

$$n$ = \prod_{k=1}^{n} k! = G(n + 2)$$

(5.6)

where n is the super-factorial.
References for the Barnes G function

5.1.3 Fox μ function (change of base formula)

TODO

5.1.4 Galidakis HW function (hyper-product-logarithm)

Definition 5.7. The Galidakis HW function is

\[
HW_k(c_1, \cdots, c_n; \ z) = w \text{ where } w \prod_{k=1}^{m} (e^{c_k} w) = z \tag{5.8}
\]

According to Galidakis, a Taylor series expansion of an HW function is:

\[
HW(c; w) = z_0 + \sum_{n=1}^{\infty} \frac{(w - w_0)^n}{n!} \left\{ \frac{d^{n-1}}{dz^{n-1}} \left[\frac{z - z_0}{G(z) - w_0} \right]^n \right\}_{z=z_0}
\]

where

\[
G(z) = z \prod_{n=1}^{m} (e^{c_n}; z)
\]

which he derives using the Lagrange Inversion Theorem.
Figure 5.3: Plot of $H(x) = \infty x$ (converge, real, imaginary)

Figure 5.4: Region of convergence of $\lim_{n \to \infty} n^x$
5.1.5 Knoebel H function (infinitely iterated exponential)

Definition 5.9. The infinitely iterated exponential is $H_L(x) = \lim_{n \to \infty} n^x$.

Definition 5.10. The Knoebel H function is $H_k(x) = \exp \left(-W_k(-\log(x))\right)$

Another version of this function by Galidakis is $h_k(x) = \exp \left(-W_k(-\log(x))\right)$ but this gives the wrong branch structure, because $h_0(x) < h_{(-1)}(x)$ whereas with the definition above $H_0(x) < H_1(x)$ which coincides with the real branch structure. We can use H and h to distinguish between the two branch structures of this function.

In Knoebel’s 1981 paper [21], he asked three questions: “When does $x^y < y^x$”, “When does $x^y = y^x$” and “Is there a formula for $y = f(x)$”. For the first question, see the section on iterated exponentials. For the second and third question, see the section on the exponential commutator. The exponential commutator can be found through the different branches of the Knoebel H function, described here.

The infinitely iterated exponential (H_L) is the first form of tetration, and its convergence is the first theorem of tetration. In 1783, Euler proved that H_L converges on the positive real axis if and only if $e^{-e} \leq x \leq e^{1/e}$, later discussed by Eisenstein in 1844. Since both Euler and Eisenstein were the first to talk about H_L, this interval is sometimes known as the Euler-Eisenstein interval.

The infinitely iterated exponential spawned research into nested exponentials, where Barrow [4] and others sought converges tests comparable to those available for infinite series. Although few convergence tests exist, Bachman [?] concludes that with the addition of his proof of the Ramanujan convergence test, the theory of the convergence of infinitely nested exponentials is complete.

The theory of infinitely iterated exponentials had been worked on by Shell in his thesis [?]. Thron [?] had come close to a complete parameterization of the region in the complex plane where H_L converges, but left some points out. Shell proved that $H_L(e^{\zeta}e^{-\zeta})$ converges to e^{ζ} if $|\zeta| < 1$. This region is illustrated in figure (5.4), and is sometimes called the Shell-Thron region. Shell then went on to derive a convergence test for infinitely iterated exponentials with arbitrary top exponent, where he shows that $\exp_0^{\infty}(e^{\zeta}e^{-\zeta})(z)$ converges to e^{ζ} if and only if $|\zeta| < 1$ and:

$$|z - e^{\zeta}| < r|e^{\zeta}|$$ (5.11)

where r is a positive root of the equation $\log(1 + r)/r = |\zeta|$.

A general derivative of the Knoebel H function is:

$$H'(x) = \frac{H(x)^2}{x(1 - H(x)\log(x))}$$ (5.12)
which can be turned into a differential equation by cross multiplying, which in turn can be solved by the Frobenius method to obtain the coefficients. Fortunately, the coefficients have already been found, and there are two well-known expansions for this function, one due to Eissenstein [\(?\)], and the other due to Jovovic.

A Puiseux series expansion of H is:

Theorem 5.13.

\[
\sum_{k=0}^{\infty} \frac{\log(x)^k}{k!} (k + 1)^{(k-1)}
\]

A Taylor series expansion of H is:

Theorem 5.15 (Jovovic [A033917]).

\[
\sum_{k=0}^{\infty} \frac{(x-1)^k}{k!} \sum_{j=0}^{k} \left[\frac{k}{j}\right] (j + 1)^{(j-1)}
\]

5.1.6 Lambert W function (product-logarithm)

![Figure 5.5: Plot of $W(x)$](image)

Figure 5.5: Plot of $W(x)$ (invertible, real, imaginary)
Definition 5.17. The Lambert W function is defined by $W(x)e^{W(x)} = x$.

The Lambert W function is the most important function in its class, because it is available in most major computer algebra systems (CAS) as a built-in function. It is available in Maple as $\text{LambertW}(x)$ and in Mathematica as $\text{LambertW}[x]$.

A closely related function is defined as $T(x) = -W(-x)$, which is known as the tree function.

A general derivative of the Lambert W function is:

$$W'(x) = \frac{W(x)}{x(1+W(x))} \quad (5.18)$$

5.1.7 Munafo class function

In Munafo’s website about Large Numbers [27] he describes a number class system. His description is based on the perception class of a real number, possibly large. The Munafo class system starts by defining class-0 numbers as 1 through 6. Munafo then gives an upper-bound for class-1 at about 10^6, and for class-2 numbers at about 10^{10^6}. This is obviously a super-logarithmic scale, so we can use the super-logarithm to simplify his description.

Let the Munafo class of n be denoted $MC(n)$. The class function satisfies:

$$\exp^{MC(n)-1}(6) < n \leq \exp^{MC(n)}(6) \quad (5.19)$$

Replace 6 with $\exp^{\text{slog}_{10}(6)}(1)$, and add hyper-exponents:

$$\exp^{MC(n)-1}(\exp^{\text{slog}_{10}(6)}(1)) < n \leq \exp^{MC(n)}(\exp^{\text{slog}_{10}(6)}(1)) \quad (5.20)$$

$$\exp^{MC(n)-1+\text{slog}_{10}(6)}(1) < n \leq \exp^{MC(n)+\text{slog}_{10}(6)}(1) \quad (5.21)$$

Take the super-log of each side, then subtract $MC(n) + \text{slog}_{10}(6)$ from each side:

$$MC(n) - 1 + \text{slog}_{10}(n) < \text{slog}_{10}(n) \leq MC(n) + \text{slog}_{10}(6) \quad (5.22)$$

$$-1 < \text{slog}_{10}(n) - \text{slog}_{10}(6) - MC(n) \leq 0 \quad (5.23)$$

$$\lfloor \text{slog}_{10}(n) - \text{slog}_{10}(6) - MC(n) \rfloor = 0 \quad (5.24)$$

Since the middle is always between -1 and 0 (but never -1), the ceiling of the middle is always zero. Using (7.6), we can take $MC(n)$ outside the ceiling, because it is an integer, so we can summarize the Munafo class $MC(n)$ of a number n as:

$$MC(n) = \lfloor \text{slog}_{10}(n) - \text{slog}_{10}(6) \rfloor \quad (5.25)$$
Munafo class of named large numbers

<table>
<thead>
<tr>
<th>$MC(n)$</th>
<th>$\log_{10}(n)$</th>
<th>n</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>zero</td>
</tr>
<tr>
<td>0</td>
<td>0.39312</td>
<td>1</td>
<td>one</td>
</tr>
<tr>
<td>0</td>
<td>0.58836</td>
<td>2</td>
<td>two</td>
</tr>
<tr>
<td>0</td>
<td>0.70801</td>
<td>3</td>
<td>three</td>
</tr>
<tr>
<td>0</td>
<td>0.79068</td>
<td>4</td>
<td>four</td>
</tr>
<tr>
<td>0</td>
<td>0.85223</td>
<td>5</td>
<td>five</td>
</tr>
<tr>
<td>1</td>
<td>0.90044</td>
<td>6</td>
<td>six</td>
</tr>
<tr>
<td>1</td>
<td>0.93957</td>
<td>7</td>
<td>seven</td>
</tr>
<tr>
<td>1</td>
<td>0.97220</td>
<td>8</td>
<td>eight</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>9</td>
<td>nine</td>
</tr>
<tr>
<td>1</td>
<td>1.39312</td>
<td>10</td>
<td>ten</td>
</tr>
<tr>
<td>1</td>
<td>1.58836</td>
<td>100</td>
<td>hundred</td>
</tr>
<tr>
<td>1</td>
<td>1.85223</td>
<td>1000</td>
<td>thousand</td>
</tr>
<tr>
<td>2</td>
<td>1.97220</td>
<td>10^9</td>
<td>billion</td>
</tr>
<tr>
<td>2</td>
<td>2.01411</td>
<td>$e \approx 3.7149 \times 10^{10}$</td>
<td>e-tetra-pi</td>
</tr>
<tr>
<td>2</td>
<td>2.31648</td>
<td>$</td>
<td>M</td>
</tr>
<tr>
<td>2</td>
<td>2.36888</td>
<td>$136 \times 2^{256} \approx 1.5748 \times 10^{79}$</td>
<td>Eddington's number</td>
</tr>
<tr>
<td>2</td>
<td>2.39312</td>
<td>10^{100}</td>
<td>googol</td>
</tr>
<tr>
<td>3</td>
<td>3.39312</td>
<td>$10^{10^{100}}$</td>
<td>googol-plex</td>
</tr>
</tbody>
</table>

5.2 Special cases of exponentials

5.2.1 Decremented exponentials

5.2.2 Product exponentials

Product exponentials $PE_b(z) = zb^z$ are not very common, except in certain partial differential equations. When they arise, they usually arise with base e, so the form $PE(z) = PE_e(z)$ is the most common.

5.2.3 Scaled exponentials

Work on the dynamics of the “exponential map” rarely talk about $exp_x(z) = x^z$. Daniel Geisler [?] has done some initial research into the dynamics of exp_x. However, Devaney [?] and others have written extensive investigations into the map $SE_\lambda(z) =$
\(\lambda e^z \). The dynamics of \(SE_\lambda \) do not immediately imply the same properties of \(\exp_x \), but we can relate them by noticing that:

\[
\begin{align*}
SE_\lambda(\lambda z) &= \lambda e^{\lambda z} = \lambda \exp_{(e^\lambda)}(z) \\
SE_\lambda^{o2}(\lambda z) &= \lambda e^{e^{\lambda z}} = \lambda \exp_{(e^\lambda)}^{o2}(z) \\
SE_\lambda^{o3}(\lambda z) &= \lambda e^{e^{e^{\lambda z}}} = \lambda \exp_{(e^\lambda)}^{o3}(z)
\end{align*}
\]

and since this pattern obviously continues indefinitely, we find the relationship:

\[
SE_\lambda^{o_n}(\lambda z) = \lambda \exp_{(e^\lambda)}^{o_n}(z)
\] (5.29)

for all integer \(n \), which allows theorems about one to be converted into the other.

5.3 Special cases of tetration

5.3.1 Half-exponential

Definition 5.30. The half-exponential is \(\exp_b^{o_{1/2}}(x) \).

TODO
5.3.2 Self-power

Definition 5.31. The self-power is $SP(x) := x^x = 2^x$.

Figure 5.7: Plot of x^x (invertible, real, imaginary)

Although this is a simple case of tetration, it is non-trivial since the immediate answer most would give for a power series expansion of $2^x = x^x$ is the exponential expansion $x^x = e^{x \log(x)} = \sum_k x^k \frac{\log(x)^k}{k!}$ which is not a Taylor series in x. Below are the Puiseux and Taylor series in x for this special case. They can be found through differentiation of x^x or e^{x^x}, and the closed-forms for the exponential coefficients can be found in Sloane’s OEIS [?]. [how its related to polygon notation]

A Puiseux series expansion:

Theorem 5.32.

$$2^x = \sum_{k=0}^{\infty} \log(x)^k \frac{k!}{k} \sum_{j=1}^{k} \left(\left(k \right) \right) }_j (k-j) \tag{5.33}$$

A Taylor series expansion:

Theorem 5.34 (Jovovic [A005727]).

$$2^x = \sum_{k=0}^{\infty} \frac{(x-1)^k}{k!} \sum_{j=0}^{k} \left[\left(\left(k \right) \right) }_j \sum_{i=0}^{j} \left(\frac{1}{i} \right) i^{j-i} \tag{5.35}$$
where $0^0 = 1$.

Iterated Second Hyperpowers We begin with the integer iterates:

$$SP^{o_1}(x) = x^x = T(x, x, 1)$$
(5.36)

$$SP^{o_2}(x) = (x^x)^{(x^x)} = T(x, x, 1 + x)$$
(5.37)

$$SP^{o_3}(x) = (x^x)^{(x^x)(x^x)} = T(x, x, 1 + x + x^{1+x})$$
(5.38)

This leads us to notice that the third tower element is a sum of terms that satisfy the recurrence equation:

$$c_{n+1}(x) = c_n(x) + x^{c_n(x)}$$ where $c_1(x) = 1$, which allows the iterate family of Frappier exponentials to be written: $FE^{[n]}(x) = T(x, x, c_n(x))$, however, this affords very little insight into the flow of Frappier exponentials.

Two methods that work: * Lagrange interpolation of iterate-derivative matrix about $x = 1$ (only works because parabolic) * non-integer matrix powers of Bell matrix of $SH(x + 1) - 1$

$$SP^{ot}(x) = 1 + (x - 1) + t(x - 1)^2 + \left(-\frac{1}{2} t + t^2 \right)(x - 1)^3 + \left(\frac{7}{12} t - \frac{5}{4} t^2 + t^3 \right)(x - 1)^4 + \left(-\frac{7}{8} t + \frac{17}{8} t^2 - \frac{13}{6} t^3 + t^4 \right)(x - 1)^5 + \left(\frac{169}{120} t - \frac{49}{12} t^2 + \frac{119}{24} t^3 - \frac{77}{24} t^4 + t^5 \right)(x - 1)^6 + ...$$
(5.39)

5.3.3 Self-root

Definition 5.40. The self-root is $SR(x) = x^{1/x}$.

Theorem 5.41 (Jovovic [A008405]).

$$x^{1/x} = \sum_{k=0}^{\infty} \frac{(x - 1)^k}{k!} \sum_{j=0}^{k} \left[\begin{array}{c} k \\ j \end{array} \right] \sum_{i=0}^{j} \binom{j}{i} (-i)^{j-i}$$
(5.42)

Theorem 5.43 (not double-checked).

$$\log(x^{1/x}) = \sum_{k=0}^{\infty} \frac{(x - 1)^k}{k!} \sum_{j=0}^{k} \binom{k}{j} (-j)^{k-j}$$
(5.44)
5.3.4 Super-sqrt (ssqrt)

Definition 5.45. The super-sqrt is \(\text{ssqrt}_k(x) = \exp(W_k(\log(x))) \).

Theorem 5.46 (Jovovic [A120980]).

\[
\sqrt[k]{x} = \sum_{k=0}^{\infty} \frac{(x-1)^k}{k!} \sum_{j=0}^{k} \left[\begin{array}{c} k \\ j \end{array} \right] (1-j)^{(j-1)}
\]
(5.47)

Theorem 5.48 (not double-checked).

\[
\log(\sqrt[k]{x}) = \sum_{k=0}^{\infty} \frac{(x-1)^k}{k!} \left(\frac{(-1)^k}{k+1} \right) \sum_{j=1}^{k+1} \left(\frac{k}{j} \right) (j-1)^{(j-1)}
\]
(5.49)

The second super-root \(\sqrt[k]{z} = x \) solves the equation \(x^x = z \) for \(x \). An obvious alternative to using a function to solve this example equation is by using iteration. Before we can use iteration we must take the \(x \)-th root of both sides to get \(x = z^{1/x} \) and take the reciprocal of both sides to get \(1/x = \left(1/z\right)^{1/x} \). By replacing \(1/x \) with \((1/z)^{1/x} \) repeatedly, we obtain an infinitely iterated exponential \(1/x = \infty(1/z) \). Now that there is only one \(x \) in the expression we can take the reciprocal again to find the relationship between the second super-root and infinitely iterated exponentials:

\[
\sqrt[k]{z} = x = \frac{1}{\infty(1/z)}
\]
(5.50)
A similar relationship can be found with the Lambert W-function. Starting with the definition of the second super-root we have already obtained $x = z^{1/x}$, and dividing by x gives $1 = (1/x)z^{1/x}$ so we can manipulate the equation into the form $we^w = z$ used by the definition of the Lambert W-function. Substitute $z = e^\log(z)$ to get $1 = (1/x)e^{\log(z)/x}$, and multiply by $\log(z)$ to get $\log(z) = (\log(z)/x)e^{\log(z)/x}$, and since the equation is of the form of the definition of the Lambert W-function, we have $W(\log(z)) = \log(z)/x$. This involves only one x so solving gives the relationship between the second super-root and the Lambert W-function:

$$\sqrt[n]{z} = x = \frac{\log(z)}{W(\log(z))}$$

At this point one could note that these techniques will only work for the second super-root, and not the third or fourth, because iteration would be so much more complicated in these and other cases. There is, however, one other super-root that can be simplified like the second super-root can; the infinite super-root. The infinite super-root is defined as $\text{srt}_\infty(z) = x$ if and only if $\infty x = z$ but we already know that the inverse function is $x = z^{1/z} = \sqrt{z}$ by definition. Interestingly, this can be manipulated into a form that looks very similar to (5.50), by taking the reciprocal of the reciprocal an equivalent expression is obtained:

$$\text{srt}_\infty(z) = x = \sqrt[2]{\frac{1}{x}} = \frac{1}{2(1/z)}$$
Our aim is to understand the many relationships that exist between infinitely iterated exponentials, the second super-root, and the Lambert W-function, one of which shows that the first two are \emph{strangely commutative} with respect to 2 and ∞:

\[
\begin{align*}
\text{srt}_2(z) &= 1/\infty(1/z) \\
\text{srt}_\infty(z) &= 1/2(1/z)
\end{align*}
\]

For more information see the section on topological conjugacy.

\section{Miscellaneous functions}

\subsection{Exponential commutator}

\textbf{Definition 5.53.} The exponential commutator is defined as:

\[EC(x) = y \text{ where } x^y = y^x \text{ and } x \neq y\] (5.54)

The exponential commutator is one of the functions Knoebel \cite{knoebel1996} discusses in his review of iterated exponentials.

This can be found for $x \in \mathbb{R}$ by:

\[EC(x) = \begin{cases}
H_1(x^{1/x}) & \text{if } x < e, \\
H(x^{1/x}) & \text{if } x > e.
\end{cases} \] (5.55)

It is debatable whether or not $EC(e) = e$ since this would not satisfy (1).

\textbf{Question 5.56.} When does $x^y = y^x$?

\subsection{Exponential factorial}

\textbf{Definition 5.57.} The exponential factorial is $EF(x) = x^{EF(x-1)}$ where $EF(1) = 1$.

Other initial conditions such as $EF(0) = 0$ have also been used before \cite{other_reference1}.
5.5 Topological Conjugacy

5.5.1 Exponential-like conjugates

Exponential-like conjugates satisfy the following diagram:

\[\log_b(z) \quad b^x = (h^{1/h})^x \quad \Rightarrow \quad \left\{ \begin{array}{c}
\lambda x \\
\lambda \exp x = \log(b) \exp x
\end{array} \right. \]

where \(b = e^\lambda = h^{1/h} \) and \(h = H(b) = \infty b \) and \(\lambda = \log(b) \).

5.5.2 Lambert-like conjugates

Lambert-like conjugates satisfy the following diagram:

\[x^x \quad \Rightarrow \quad \left\{ \begin{array}{c}
\frac{1}{x} \\
\frac{1}{x}
\end{array} \right. \]

\[e^{-x} \quad e^{-x} \quad x^{1/x} \]

\[W(z) \quad x \exp x \quad (z) \]

\[e^{-x} \quad e^{-x} \quad x^{1/x} \]

\[C \quad C \quad C \quad C \]

41
Appendix A

Function symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Function Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS</td>
<td>Helm’s alternating tetration series</td>
</tr>
<tr>
<td>BA</td>
<td>Bowers’ array notation</td>
</tr>
<tr>
<td>CA</td>
<td>Conway’s chained arrow notation</td>
</tr>
<tr>
<td>CN</td>
<td>Nelson’s hyper-logarithm transform</td>
</tr>
<tr>
<td>DE</td>
<td>decremented exponentials ((e^x - 1))</td>
</tr>
<tr>
<td>EC</td>
<td>exponential commutator ((x^y = y^x))</td>
</tr>
<tr>
<td>EF</td>
<td>exponential factorial</td>
</tr>
<tr>
<td>EG</td>
<td>exponential gamma function</td>
</tr>
<tr>
<td>H</td>
<td>Knoebel (H) function, infinitely iterated exponential</td>
</tr>
<tr>
<td>HC</td>
<td>critical piece of hyper-operations over real hyper-exponents</td>
</tr>
<tr>
<td>HD</td>
<td>critical piece of hyper-operations over real ranks</td>
</tr>
<tr>
<td>HE</td>
<td>half-exponential function</td>
</tr>
<tr>
<td>HF</td>
<td>Frappier hyper-operations</td>
</tr>
<tr>
<td>HR</td>
<td>Robbins hyper-operations</td>
</tr>
<tr>
<td>HT</td>
<td>Trappmann hyper-operations</td>
</tr>
<tr>
<td>HW</td>
<td>Galidakis (HW) function, hyper-product-logarithms</td>
</tr>
<tr>
<td>IG</td>
<td>Ioannis Galidakis’ extension of tetration</td>
</tr>
<tr>
<td>MC</td>
<td>Munafo class function</td>
</tr>
<tr>
<td>PE</td>
<td>product exponentials ((xe^x))</td>
</tr>
<tr>
<td>RM</td>
<td>Robert Munafo’s extension of tetration</td>
</tr>
<tr>
<td>SE</td>
<td>Devaney’s scaled exponentials ((ce^x))</td>
</tr>
<tr>
<td>SM</td>
<td>Steinhaus-Moser polygon notation</td>
</tr>
<tr>
<td>SP</td>
<td>self-power function, second tetrate ((x^x))</td>
</tr>
<tr>
<td>SR</td>
<td>self-root function, infinite super-root ((x^{1/x}))</td>
</tr>
<tr>
<td>W</td>
<td>Lambert (W) function, base-(e) product-logarithm</td>
</tr>
</tbody>
</table>
Appendix B

Tables of values

In the table below, (BC_2) is used because of 3×3 matrix power rules in some CASs, (DG_3) is used because Geisler gives terms 0-3 explicitly in [?], for (SW), w has been chosen such that $\left(-\frac{1}{2}\right)e = 1/2$, and average values are used for (CN$^{-1}$).

$$\begin{array}{|c|c|c|c|c|c|c|c|}
\hline
y & Lin & BC_2 & DG_5 & IG & RM & SW & AR_{10}^{-1} & CN_{10}^{-1} \\
\hline
-1 & 0 & 0 & 0.241 + 0.326i & & & & 0.1062 & \\
-0.9 & 0.1 & 0.1055 & 0.394 + 0.170i & & & & 0.2079 & \\
-0.8 & 0.2 & 0.2072 & 0.475 + 0.034i & & & & 0.3063 & \\
-0.7 & 0.3 & 0.3063 & 0.508 - 0.060i & & & & 0.4029 & \\
-0.6 & 0.4 & 0.4036 & 0.524 - 0.105i & & & & 0.4986 & \\
-0.5 & 0.5 & 0.5000 & 0.547 - 0.106i & & & & 0.5946 & \\
-0.4 & 0.6 & 0.5964 & 0.593 - 0.081i & & & & 0.6917 & \\
-0.3 & 0.7 & 0.6937 & 0.667 - 0.046i & & & & 0.7910 & \\
-0.2 & 0.8 & 0.7928 & 0.766 - 0.018i & & & & 0.8934 & \\
-0.1 & 0.9 & 0.8945 & 0.880 - 0.002i & & & & 1.0000 & \\
0 & 1 & 1 & 1 & & & & 1.1121 & 0.0000 \\
0.1 & 1.1052 & 1.1100 & 1.119 - 0.007i & 0.0000 & 0.0000 & 0.0000 & 1.1121 & 0.0000 \\
0.2 & 1.2214 & 1.2258 & 1.237 - 0.016i & & & & 1.2310 & \\
0.3 & 1.3499 & 1.3483 & 1.356 - 0.022i & & & & 1.3584 & \\
0.4 & 1.4918 & 1.4786 & 1.484 - 0.021i & & & & 1.4961 & \\
0.5 & 1.6487 & 1.6180 & 1.626 - 0.015i & & & & 1.6465 & \\
0.6 & 1.8221 & 1.7678 & 1.789 - 0.006i & & & & 1.8123 & \\
0.7 & 2.0138 & 1.9293 & 1.977 + 0.003i & & & & 1.9971 & \\
0.8 & 2.2255 & 2.1040 & 2.191 + 0.008i & & & & 2.2055 & \\
0.9 & 2.4596 & 2.2937 & 2.432 + 0.010i & & & & 2.4433 & \\
1 & e & 2.5 & 2.702 + 0.017i & & & e & ? \\
\hline
\end{array}$$
Appendix C

Series expansions

Exponential Coefficient Tables A listing follows of the first 10 (or so) exponential coefficients of tetration functions:

Table 3: A_{nk} where $n^x = \sum_{k=0}^{\infty} \frac{A_{nk} \log(x)^k}{k!}$

<table>
<thead>
<tr>
<th>n,k</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>10</td>
<td>41</td>
<td>196</td>
<td>1057</td>
<td>6322</td>
<td>41393</td>
<td>293608</td>
<td>2237921</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>16</td>
<td>101</td>
<td>756</td>
<td>6607</td>
<td>65794</td>
<td>733833</td>
<td>9046648</td>
<td>121961051</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>16</td>
<td>125</td>
<td>1176</td>
<td>12847</td>
<td>160504</td>
<td>2261289</td>
<td>35464816</td>
<td>612419291</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>16</td>
<td>125</td>
<td>1296</td>
<td>16087</td>
<td>229384</td>
<td>3687609</td>
<td>66025360</td>
<td>1303751051</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>16</td>
<td>125</td>
<td>1296</td>
<td>16807</td>
<td>257104</td>
<td>4480569</td>
<td>87238720</td>
<td>1874561291</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>16</td>
<td>125</td>
<td>1296</td>
<td>16807</td>
<td>262144</td>
<td>4742649</td>
<td>96915520</td>
<td>2197675691</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>16</td>
<td>125</td>
<td>1296</td>
<td>16807</td>
<td>262144</td>
<td>4782969</td>
<td>99637120</td>
<td>2323474091</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>16</td>
<td>125</td>
<td>1296</td>
<td>16807</td>
<td>262144</td>
<td>4782969</td>
<td>100000000</td>
<td>2354318891</td>
</tr>
<tr>
<td>∞</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>16</td>
<td>125</td>
<td>1296</td>
<td>16807</td>
<td>262144</td>
<td>4782969</td>
<td>100000000</td>
<td>2357947691</td>
</tr>
</tbody>
</table>

Table 8: A_{nk} where $n(x; z) = \sum_{k=0}^{\infty} \frac{A_{nk} \log(x)^k}{k!}$

<table>
<thead>
<tr>
<th>n,k</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>z</td>
<td>z^2</td>
<td>z^3</td>
<td>z^4</td>
<td>z^5</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1 + 2z</td>
<td>1 + 6z + 3z^2</td>
<td>1 + 12z + 24z^2 + 4z^3</td>
<td>1 + 20z + 90z^2 + 80z^3 + 5z^4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>10 + 6z</td>
<td>41 + 48z + 12z^2</td>
<td>196 + 360z + 180z^2 + 20z^3</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>16</td>
<td>101 + 24z</td>
<td>756 + 360z + 60z^2</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>16</td>
<td>125</td>
<td>1176 + 120z</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>16</td>
<td>125</td>
<td>1296</td>
</tr>
<tr>
<td>∞</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>16</td>
<td>125</td>
<td>1296</td>
</tr>
</tbody>
</table>
Table 4: A_{nk} where $n_x = \sum_{k=0}^{\infty} \frac{A_{nk}(x-1)^k}{k!}$

<table>
<thead>
<tr>
<th>n, k</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>8</td>
<td>10</td>
<td>54</td>
<td>-42</td>
<td>944</td>
<td>-5112</td>
<td>47160</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>32</td>
<td>180</td>
<td>954</td>
<td>6524</td>
<td>45016</td>
<td>360144</td>
<td>3023640</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>56</td>
<td>360</td>
<td>2934</td>
<td>26054</td>
<td>269128</td>
<td>3010680</td>
<td>37616880</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>56</td>
<td>480</td>
<td>4374</td>
<td>47894</td>
<td>574888</td>
<td>7829424</td>
<td>116392080</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>56</td>
<td>480</td>
<td>4374</td>
<td>47894</td>
<td>574888</td>
<td>7829424</td>
<td>116392080</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>56</td>
<td>480</td>
<td>4374</td>
<td>47894</td>
<td>574888</td>
<td>7829424</td>
<td>116392080</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>56</td>
<td>480</td>
<td>4374</td>
<td>47894</td>
<td>574888</td>
<td>7829424</td>
<td>116392080</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>56</td>
<td>480</td>
<td>4374</td>
<td>47894</td>
<td>574888</td>
<td>7829424</td>
<td>116392080</td>
</tr>
<tr>
<td>∞</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>56</td>
<td>480</td>
<td>5094</td>
<td>65534</td>
<td>944488</td>
<td>15359184</td>
<td>274118880</td>
</tr>
</tbody>
</table>

Table 8: A_{nk} where $a\,(x; z) = \sum_{k=0}^{\infty} \frac{A_{nk}(x-1)^k}{k!}$

<table>
<thead>
<tr>
<th>n, k</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>$-z + z^2$</td>
<td>$2z - 3z^2 + z^3$</td>
<td>$-6z + 11z^2 - 6z^3 + z^4$</td>
<td>$24z - 50z^2 + 35z^3 - 10z^4 + z^5$</td>
<td>24</td>
<td>-30</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>$2z$</td>
<td>$3z^2$</td>
<td>$-2z + 6z^2 + 4z^3$</td>
<td>$10z - 45z^2 + 40z^3 + 5z^4$</td>
<td>10</td>
<td>45</td>
<td>40</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>$3 + 6z$</td>
<td>$8 + 12z + 12z^2$</td>
<td>$10 + 90z + 60z^2 + 20z^3$</td>
<td>10</td>
<td>90</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>$32 + 24z$</td>
<td>$180 + 120z + 60z^2$</td>
<td>180</td>
<td>120</td>
<td>60</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>$56 + 360 + 120z$</td>
<td>$360 + 120z$</td>
<td>360</td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>$56 + 480$</td>
<td>480</td>
<td>480</td>
<td>480</td>
<td>480</td>
<td>480</td>
</tr>
<tr>
<td>∞</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>$56 + 480$</td>
<td>480</td>
<td>480</td>
<td>480</td>
<td>480</td>
<td>480</td>
</tr>
</tbody>
</table>

Table 5: A_{nk} where $\log(n\,x) = \sum_{k=0}^{\infty} \frac{A_{nk}(x-1)^k}{(k+1)!}$

<table>
<thead>
<tr>
<th>n, k</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>2</td>
<td>-6</td>
<td>24</td>
<td>-120</td>
<td>720</td>
<td>-5040</td>
<td>40320</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>44</td>
<td>-96</td>
<td>986</td>
<td>-6056</td>
<td>52272</td>
<td>-466920</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>26</td>
<td>104</td>
<td>804</td>
<td>4136</td>
<td>38296</td>
<td>247320</td>
<td>258600</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>26</td>
<td>224</td>
<td>1524</td>
<td>15896</td>
<td>149176</td>
<td>1830384</td>
<td>21682560</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>26</td>
<td>224</td>
<td>2244</td>
<td>23456</td>
<td>297016</td>
<td>3947184</td>
<td>60263760</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>26</td>
<td>224</td>
<td>2244</td>
<td>2244</td>
<td>28496</td>
<td>377656</td>
<td>5852304</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>26</td>
<td>224</td>
<td>2244</td>
<td>2244</td>
<td>28496</td>
<td>417976</td>
<td>6759504</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>26</td>
<td>224</td>
<td>2244</td>
<td>2244</td>
<td>28496</td>
<td>417976</td>
<td>7122384</td>
</tr>
<tr>
<td>∞</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>26</td>
<td>224</td>
<td>2244</td>
<td>2244</td>
<td>28496</td>
<td>417976</td>
<td>7122384</td>
</tr>
</tbody>
</table>

And a listing of the first 10 (or so) exponential coefficients of super-root functions:

46
Table 6: \(A_{nk} \) where \(\text{srt}_n(z) = \sum_{k=0}^{\infty} \frac{A_{nk} \log(z)^k}{k!} \)

<table>
<thead>
<tr>
<th>(n, k)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>4</td>
<td>-27</td>
<td>256</td>
<td>-3125</td>
<td>46656</td>
<td>-823543</td>
<td>16777216</td>
<td>-387420489</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-2</td>
<td>33</td>
<td>-184</td>
<td>-695</td>
<td>32124</td>
<td>-369215</td>
<td>-1298816</td>
<td>143686161</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-2</td>
<td>9</td>
<td>116</td>
<td>-1175</td>
<td>-3786</td>
<td>92449</td>
<td>1565416</td>
<td>-4159759</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-2</td>
<td>9</td>
<td>-4</td>
<td>625</td>
<td>-7146</td>
<td>-33551</td>
<td>821512</td>
<td>-2333439</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-2</td>
<td>9</td>
<td>-4</td>
<td>-95</td>
<td>5454</td>
<td>-60431</td>
<td>-312488</td>
<td>8371521</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-2</td>
<td>9</td>
<td>-4</td>
<td>-95</td>
<td>414</td>
<td>40369</td>
<td>-554408</td>
<td>-2968479</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-2</td>
<td>9</td>
<td>-4</td>
<td>-95</td>
<td>414</td>
<td>49</td>
<td>352792</td>
<td>-5387679</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-2</td>
<td>9</td>
<td>-4</td>
<td>-95</td>
<td>414</td>
<td>49</td>
<td>-10088</td>
<td>3684321</td>
</tr>
<tr>
<td>(\infty)</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-2</td>
<td>9</td>
<td>-4</td>
<td>-95</td>
<td>414</td>
<td>49</td>
<td>-10088</td>
<td>55521</td>
</tr>
</tbody>
</table>

Table 7: \(A_{nk} \) where \(\text{srt}_n(z) = \sum_{k=0}^{\infty} \frac{A_{nk}(z-1)^k}{k!} \)

<table>
<thead>
<tr>
<th>(n, k)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-2</td>
<td>9</td>
<td>-68</td>
<td>740</td>
<td>-10554</td>
<td>185906</td>
<td>-3891320</td>
<td>94259952</td>
<td>-2592071760</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-2</td>
<td>3</td>
<td>28</td>
<td>-510</td>
<td>4926</td>
<td>-10500</td>
<td>-900304</td>
<td>26247816</td>
<td>-392237520</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>-2</td>
<td>3</td>
<td>4</td>
<td>30</td>
<td>-2094</td>
<td>33810</td>
<td>-338176</td>
<td>3412080</td>
<td>-93913560</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>-2</td>
<td>3</td>
<td>4</td>
<td>-90</td>
<td>1506</td>
<td>-28350</td>
<td>444704</td>
<td>-5489064</td>
<td>47130840</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>-2</td>
<td>3</td>
<td>4</td>
<td>-90</td>
<td>786</td>
<td>-630</td>
<td>-166816</td>
<td>4490136</td>
<td>-79146360</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>-2</td>
<td>3</td>
<td>4</td>
<td>-90</td>
<td>786</td>
<td>-5670</td>
<td>75104</td>
<td>-2132424</td>
<td>55724040</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>-2</td>
<td>3</td>
<td>4</td>
<td>-90</td>
<td>786</td>
<td>-5670</td>
<td>34784</td>
<td>226296</td>
<td>-22597560</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1</td>
<td>-2</td>
<td>3</td>
<td>4</td>
<td>-90</td>
<td>786</td>
<td>-5670</td>
<td>34784</td>
<td>136584</td>
<td>2804040</td>
</tr>
<tr>
<td>(\infty)</td>
<td>1</td>
<td>1</td>
<td>-2</td>
<td>3</td>
<td>4</td>
<td>-90</td>
<td>786</td>
<td>-5670</td>
<td>34784</td>
<td>-136584</td>
<td>-824760</td>
</tr>
</tbody>
</table>

Table 8: \(A_{nk} \) where \(\log(\text{srt}_n(x)) = \sum_{k=0}^{\infty} \frac{A_{nk}(x-1)^k}{(k+1)!} \)

<table>
<thead>
<tr>
<th>(n, k)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>-3</td>
<td>17</td>
<td>-146</td>
<td>1704</td>
<td>-25284</td>
<td>456224</td>
<td>-9702776</td>
<td>23771888</td>
<td>-6593032560</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>-3</td>
<td>11</td>
<td>-26</td>
<td>-266</td>
<td>6336</td>
<td>-73662</td>
<td>166608</td>
<td>18635328</td>
<td>-60443080</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>-3</td>
<td>11</td>
<td>-50</td>
<td>394</td>
<td>-5364</td>
<td>82788</td>
<td>-1262064</td>
<td>20814120</td>
<td>-426484080</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>-3</td>
<td>11</td>
<td>-50</td>
<td>274</td>
<td>-1044</td>
<td>-14652</td>
<td>562416</td>
<td>-12551184</td>
<td>242958960</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>-3</td>
<td>11</td>
<td>-50</td>
<td>274</td>
<td>-1764</td>
<td>18108</td>
<td>-351504</td>
<td>8193456</td>
<td>-184206240</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>-3</td>
<td>11</td>
<td>-50</td>
<td>274</td>
<td>-1764</td>
<td>13068</td>
<td>-109584</td>
<td>1389456</td>
<td>-36030240</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>-3</td>
<td>11</td>
<td>-50</td>
<td>274</td>
<td>-1764</td>
<td>13068</td>
<td>-109584</td>
<td>1026576</td>
<td>-6999840</td>
</tr>
<tr>
<td>(\infty)</td>
<td>1</td>
<td>-3</td>
<td>11</td>
<td>-50</td>
<td>274</td>
<td>-1764</td>
<td>13068</td>
<td>-109584</td>
<td>1026576</td>
<td>-10628640</td>
</tr>
</tbody>
</table>

47
Appendix D

Credits

TODO
Bibliography

L. Euler, *De formulis exponentialibus replicatis*, Acta Academiae Scientarum Imperialis Petropolitinae 1 (1778), 3860.

