@Gottfried : answer to your conjecture on MSE. - Printable Version +- Tetration Forum ( https://math.eretrandre.org/tetrationforum)+-- Forum: Tetration and Related Topics ( https://math.eretrandre.org/tetrationforum/forumdisplay.php?fid=1)+--- Forum: Mathematical and General Discussion ( https://math.eretrandre.org/tetrationforum/forumdisplay.php?fid=3)+--- Thread: @Gottfried : answer to your conjecture on MSE. ( /showthread.php?tid=1150) |

@Gottfried : answer to your conjecture on MSE. - tommy1729 - 02/05/2017
Gottried made a conjecture here at the tetration forum about a Sum of iterations. There is a proof and new question on MSE. ( Will add link to the original conjecture later ) Here they are http://math.stackexchange.com/questions/2056934/telescoping-exercise-with-iterations http://math.stackexchange.com/questions/2090178/identify-sum-limits-n-0-infty-leftx-n-l-right-where-x-n1-sqrt31 Regards Tommy1729 RE: @Gottfried : answer to your conjecture on MSE. - tommy1729 - 02/05/2017
Here it is http://math.eretrandre.org/tetrationforum/showthread.php?tid=245&pid=5896&highlight=Easter#pid5896 Regards Tommy1729 RE: @Gottfried : answer to your conjecture on MSE. - Gottfried - 02/05/2017
(02/05/2017, 09:48 AM)tommy1729 Wrote: Here it is Ha, thanks for the msg and for the link. I'm a bit tired this days so I don't know, whether I'll be able to contribute much more than this&that small comment. I'd like when I'll see more comprehensive work on that what I think is best to be named "iteration-series" (alternating or nonalternating, one-way - or two-way-infinite extent) Gottfried |