• 0 Vote(s) - 0 Average
• 1
• 2
• 3
• 4
• 5
 Tommy triangles tommy1729 Ultimate Fellow Posts: 1,372 Threads: 336 Joined: Feb 2009 11/04/2015, 12:40 AM In analogue to Pascal triangle ( a + b) , i consider the triangles 1) a^2 + b^2 2) (a^2 + a + b^2 + b)/2 And in particular the analogue central binomial coëfficiënts. Regards Tommy1729 tommy1729 Ultimate Fellow Posts: 1,372 Threads: 336 Joined: Feb 2009 11/04/2015, 01:17 PM Obviosly everything grows like C 2^2^(n+O(1)) nomatter in what direction you go. More precise results for specific cases are possible and intresting. And the number theoretical properties. Regards Tommy1729 « Next Oldest | Next Newest »

 Possibly Related Threads... Thread Author Replies Views Last Post tommy's simple solution ln^[n](2sinh^[n+x](z)) tommy1729 1 3,001 01/17/2017, 07:21 AM Last Post: sheldonison Tommy's matrix method for superlogarithm. tommy1729 0 1,991 05/07/2016, 12:28 PM Last Post: tommy1729 Dangerous limits ... Tommy's limit paradox tommy1729 0 2,198 11/27/2015, 12:36 AM Last Post: tommy1729 Tommy's Gamma trick ? tommy1729 7 7,412 11/07/2015, 01:02 PM Last Post: tommy1729 Tommy-Gottfried divisions. tommy1729 0 1,924 10/09/2015, 07:39 AM Last Post: tommy1729 Tommy's hyperlog tommy1729 0 1,994 06/11/2015, 08:23 AM Last Post: tommy1729 Tommy-Mandelbrot function tommy1729 0 2,295 04/21/2015, 01:02 PM Last Post: tommy1729 tommy equation tommy1729 3 4,577 03/18/2015, 08:52 AM Last Post: sheldonison Kouznetsov-Tommy-Cauchy method tommy1729 0 2,318 02/18/2015, 07:05 PM Last Post: tommy1729 [Collatz] Tommy's collatz lemma tommy1729 0 2,060 09/11/2014, 08:48 AM Last Post: tommy1729

Users browsing this thread: 1 Guest(s)