• 1 Vote(s) - 5 Average
• 1
• 2
• 3
• 4
• 5
 tetration limit ?? tommy1729 Ultimate Fellow     Posts: 1,358 Threads: 330 Joined: Feb 2009 05/28/2011, 12:28 PM (04/14/2011, 08:17 PM)JmsNxn Wrote: (04/29/2009, 01:08 PM)tommy1729 Wrote: so , what are the answers ? using logarithmic semi operators (lol) {q : 0 <= q <= 1 q E R}, if S(x) is the identity function, q:ln(x) = exp^[-q](x): euh ... does this still relate to the first few posts by me and bo ? we are looking for functions ! JmsNxn Long Time Fellow    Posts: 291 Threads: 67 Joined: Dec 2010 05/29/2011, 02:06 AM Sure it is, it's a limit that's related to tetration, though a slight variant of what your original inquisition was. It's related to half-iterates of e, and is a generalization of the original limit in question I was just posting it because it popped into my head as I was reading through your thread. But, I get your point. I wasn't really contributing to your question. It's just that I couldn't think of anything to contribute from that angle, but I still read the whole thread and wanted to post something. Didn't mean to appear off-topic and shrewd  tommy1729 Ultimate Fellow     Posts: 1,358 Threads: 330 Joined: Feb 2009 05/29/2011, 07:28 PM (This post was last modified: 05/29/2011, 07:45 PM by tommy1729.) (04/02/2009, 09:56 PM)bo198214 Wrote: Perhaps then you should start with the simpler case of the double iterate. And look what a suitable function f you would find that: I dont see what useful function f that could be. we reduce to (1+1/f(n))^((1+1/f(n))^n) = Q in essense we only need to understand the relation between n and f(n). further switch f(n) and n to get (1+1/n)^((1+1/n)^f(n)) = Q ln(1+1/n) * (1+1/n)^f(n) = ln(Q) replace ln(Q) by Q f(n) = ln(Q/ln(1+1/n)) / ln(1+1/n) done. but lim n-> oo sexp_(1+f(n))[slog_(1+f(n))[n] + 1/2] = n + C 0 < C seems harder and not so related at first. worse , it might have problems stating it like above ... because our n needs to be after the second fixpoint and our superfuntions need to be defined at their second fixpoint ... which " evaporates " at oo as n goes to oo. and hence our superfunctions become valid and defined > q_n where lim q_n = oo !! if f(n) does not grow to fast this might be ok , but on the other hand to arrive at C at our RHS f(n) seems to need some fast growing rate. so f(n) is strongly restricted and C must be unique and existance is just assumed. i do not know anything efficient to compute f(n) apart from numerical *curve-fitting* upper and lower bounds as described above. or another example , actually the original OP rewritten : lim n-> oo sexp_(1+f(n))[slog_(1+f(n))[n] + 1/2] = C 0 < C now we must take the first fixpoint approaching 1 .. or the second ?? it seems easiest to take the first fixpoint , if we take the second we have the same problem of the " evaporating ' fixpoint as above. on the other hand , we dont know the radiuses for bases 1+f(n) expanded at their first or second fixpoint. again , its hard to find f(n) and C despite they are probably strongly restriced - even unique -. another idea that might make sense is that there exists a function g(n) such that but lim n-> oo sexp_(1+f(n))[slog_(1+f(n))[n] + 1/2] = g(n) 0 < g(n) < n and that g(n) gets closer and closer towards the end of the radius of one of the fixpoint expansions as n grows. and that might be inconsistant with the other equations/ideas above. so many questions. regards tommy1729 bo198214 Administrator Posts: 1,386 Threads: 90 Joined: Aug 2007 05/31/2011, 10:34 AM nice proof, however as you already said, it doesnt seem to help with your original question. tommy1729 Ultimate Fellow     Posts: 1,358 Threads: 330 Joined: Feb 2009 05/14/2015, 08:29 PM I noticed post 7 and post 33 resemble the idea of generalized golden numbers. In particular solving polynomials with a parameter. I think there is more hidden in this. Regards Tommy1729 tommy1729 Ultimate Fellow     Posts: 1,358 Threads: 330 Joined: Feb 2009 05/14/2015, 08:33 PM I think fake function theory Will help with these limits. Though that seems nontrivial. Regards Tommy1729 tommy1729 Ultimate Fellow     Posts: 1,358 Threads: 330 Joined: Feb 2009 05/28/2015, 11:32 PM Let n be a positive integer going to +oo. lim [e^{1/e} + 1/n]^^[(10 n)^{1/2} + n^{A(n)} + C + o(1)] - n = 0. Where C is a constant. Conjecture : lim A(n) = 1/e. regards tommy1729 tommy1729 Ultimate Fellow     Posts: 1,358 Threads: 330 Joined: Feb 2009 06/01/2015, 02:04 AM See also http://math.stackexchange.com/questions/...-tetration Regards Tommy1729 tommy1729 Ultimate Fellow     Posts: 1,358 Threads: 330 Joined: Feb 2009 06/11/2015, 08:25 AM No reaction ??? Regards Tommy1729 sheldonison Long Time Fellow    Posts: 630 Threads: 22 Joined: Oct 2008 06/11/2015, 10:27 AM (This post was last modified: 06/14/2015, 10:08 AM by sheldonison.) (05/28/2015, 11:32 PM)tommy1729 Wrote: Let n be a positive integer going to +oo. lim [e^{1/e} + 1/n]^^[(10 n)^{1/2} + n^{A(n)} + C + o(1)] - n = 0. Where C is a constant. Conjecture : lim A(n) = 1/e. Its a curious equation. I viewed it from a different angle: What is the slog_{1/e+1/n}(n)? But I couldn't figure out why you were interested in slog(n) as opposed to say, slog(e^e) or something like that that made more sense to me. e^e is the cusp of where this tetration function takes off, and the function starts growing superexponentially. But the (1/n) means it might take 1 or 2 more iterations to reach (1/n), Or if n is hyperexponentially large = sexp(4.5), then 3 extra iterations. But most of the time is spent getting to e^e. And that equation is dominated by approximately real(Pseudo period)-2. And you included an O(1) term in your equation anyway, which implies C isn't an exact constant. So then my counter conjecture would be that lim sexp_{1/e+1/n)(real(Period)-2)=constant, and that constant seems to be about 388 as n goes to infinity. But that seemed to be a very different equation than the one you had in mind, so I thought it would be off topic, so I didn't mention it. But yeah, I have equations for the pseudo period, which I posted below. Then there is your approximation itself. slog_{1/e+1/n}(n) = (10n)^{1/2} + n^{A(n)} + C. Can you explain why you think this is the right approach or equation? It doesn't seem to match the approximation I have for real(pseudo_period)-2... The equations for the fixed point and Period are approximately as follows. One can see that the resulting period has a sqrt term, but not sqrt(10n). Now we have switched it to a problem of iterating . In the limit, the fixed point goes to zero. This iteration mapping has a simpler Taylor series for the fixed point L, from which we can generate the Pseudo Period. this is the period at the fixed point. this is close to sqrt(10n). But I don't understand your n^A(n)~=n^(1/e) term; [(10 n)^{1/2} + n^{A(n)}]. Anyway, my counter-conjecture is that , where the period is from the equation above. The correct middle term is probably Note that So then, we have the following conjectured equation, where I'm pretty sure a 1-cyclic theta is required as n gets arbitrarily large, , whose predicted amplitude is probably about +/-0.002 - Sheldon « Next Oldest | Next Newest »

 Possibly Related Threads... Thread Author Replies Views Last Post Dangerous limits ... Tommy's limit paradox tommy1729 0 1,766 11/27/2015, 12:36 AM Last Post: tommy1729 Limit of mean of Iterations of f(x)=(ln(x);x>0,ln(-x) x<0) =-Omega constant for all x Ivars 10 13,902 03/29/2015, 08:02 PM Last Post: tommy1729 Another limit tommy1729 0 1,460 03/18/2015, 06:55 PM Last Post: tommy1729 A limit exercise with Ei and slog. tommy1729 0 1,820 09/09/2014, 08:00 PM Last Post: tommy1729 [MSE] The mick tommy limit conjecture. tommy1729 1 2,413 03/30/2014, 11:22 PM Last Post: tommy1729 tetration base conversion, and sexp/slog limit equations sheldonison 44 51,510 02/27/2013, 07:05 PM Last Post: sheldonison Solve this limit Nasser 4 4,395 12/03/2012, 07:46 AM Last Post: Nasser (MSE) A limit- question concerning base-change Gottfried 0 2,244 10/03/2012, 06:44 PM Last Post: Gottfried a limit curiosity ? Pi/2 tommy1729 0 1,946 08/07/2012, 09:27 PM Last Post: tommy1729 Question about tetration limit mike3 3 5,034 07/13/2011, 12:51 PM Last Post: tommy1729

Users browsing this thread: 1 Guest(s) 