Recurring digits
#1
For the Ackermann function with \( n \ge 10 \) and \( k \ge 2 \):

\( 2 \rightarrow n \rightarrow k \equiv 2948736 \; (mod \; 10^7) \)

\( 3 \rightarrow n \rightarrow k \equiv 4195387 \; (mod \; 10^7) \)

\( 4 \rightarrow n \rightarrow k \equiv 1728896 \; (mod \; 10^7) \)

\( 5 \rightarrow n \rightarrow k \equiv 8203125 \; (mod \; 10^7) \)

\( 6 \rightarrow n \rightarrow k \equiv 7238656 \; (mod \; 10^7) \)

\( 7 \rightarrow n \rightarrow k \equiv 5172343 \; (mod \; 10^7) \)

\( 8 \rightarrow n \rightarrow k \equiv 5225856 \; (mod \; 10^7) \)

\( 9 \rightarrow n \rightarrow k \equiv 2745289 \; (mod \; 10^7) \)

\( 11 \rightarrow n \rightarrow k \equiv 2666611 \; (mod \; 10^7) \)

\( 12 \rightarrow n \rightarrow k \equiv 4012416 \; (mod \; 10^7) \)

\( 13 \rightarrow n \rightarrow k \equiv 5045053 \; (mod \; 10^7) \)

\( 14 \rightarrow n \rightarrow k \equiv 7502336 \; (mod \; 10^7) \)

\( 15 \rightarrow n \rightarrow k \equiv 859375 \; (mod \; 10^7) \)

\( 16 \rightarrow n \rightarrow k \equiv 415616 \; (mod \; 10^7) \)

\( 17 \rightarrow n \rightarrow k \equiv 85777 \; (mod \; 10^7) \)

\( 18 \rightarrow n \rightarrow k \equiv 4315776 \; (mod \; 10^7) \)

\( 19 \rightarrow n \rightarrow k \equiv 9963179 \; (mod \; 10^7) \)
Daniel
#2
Perhaps this article provides a proof:
Blakley, G. R.; Borosh, I. Modular arithmetic of iterated powers. Comput. Math. Appl. 9 (1983), no. 4, 567--581.
Review of Zentralblatt:
http://www.zentralblatt-math.org/zmath/e...t=complete


Possibly Related Threads…
Thread Author Replies Views Last Post
  Frozen digits in any integer tetration marcokrt 2 1,119 08/14/2022, 04:51 AM
Last Post: JmsNxn
Big Grin Repetition of the last digits of a tetration of generic base Luknik 12 7,448 12/16/2021, 12:26 AM
Last Post: marcokrt



Users browsing this thread: 1 Guest(s)