tommy's simple solution ln^[n](2sinh^[n+x](z)) sheldonison Long Time Fellow Posts: 684 Threads: 24 Joined: Oct 2008 01/17/2017, 07:21 AM (This post was last modified: 01/17/2017, 04:19 PM by sheldonison.) (01/16/2017, 01:29 PM)tommy1729 Wrote: Consider f(z,x) = Lim(n --> oo)  ln^[n] ( 2sinh^[n+x] (z) ). This simple Function satisfies exp(f(z,x)) = f(z,x+1). ... Or is it the ( analytic continuation ? ) of the 2sinh method ?consider ignoring z, and using the formal inverse Schroeder series (below) for putting 2sinh^[ox] into correspondence with 2^x.  Then your sexp2sinh/TommySexp function is exactly: $k=f^{-1}(1);\;\;\;\text{TommySexp}(x)=f(k+x)$ k=0.0678383660707522254065 This also happens to be the definition I personally used for your TommySexp function, but numerically, they are all exactly the same; infinitely differentiable but conjectured nowhere analytic.   TommySexp(-0.5)=0.498743364531671 Kneser's sexp(-0.5)= 0.498563287941114 Since f(x) is only defined at the real axis, the term analytic continuation has no meaning. "Mick wondered if F^[n] ( g^[n] ) is analytic for f = sqrt and g = x^2 +1",  yes it is.  So long as you restrict yourself to the region where |g^[n]|>>1 then it will converge.  Have Mick ask on Mathstack if he wants more details. Code:2sinh^[0] = formal2sinh_ischroeder(1) = 1.05804904330694441126 {formal2sinh_ischroeder=  x + +x^ 3*  1/18 +x^ 5*  13/5400 +x^ 7*  1193/14288400 +x^ 9*  219983/87445008000 +x^11*  225002297/3280062250080000 +x^13*  3624242332901/2095369366596105600000 +x^15*  294797208996087793/7208971629918239589408000000 +x^17*  532541776280711150089/581464560943620715682280960000000 +x^19*  4423796286922654904342141267/225896613039975363731770463347368960000000 ...} - Sheldon « Next Oldest | Next Newest »

 Messages In This Thread tommy's simple solution ln^[n](2sinh^[n+x](z)) - by tommy1729 - 01/16/2017, 01:29 PM RE: tommy's simple solution ln^[n](2sinh^[n+x](z)) - by sheldonison - 01/17/2017, 07:21 AM

 Possibly Related Threads… Thread Author Replies Views Last Post tommy's "linear" summability method tommy1729 2 88 01/24/2023, 11:26 AM Last Post: jacob Maybe the solution at z=0 to f(f(z))=-z+z^2 Leo.W 9 117 01/24/2023, 12:37 AM Last Post: tommy1729 " tommy quaternion " tommy1729 31 10,543 01/20/2023, 12:33 AM Last Post: tommy1729 Semi-group iso , tommy's limit fix method and alternative limit for 2sinh method tommy1729 1 155 12/30/2022, 11:27 PM Last Post: tommy1729 tommy's group addition isomo conjecture tommy1729 1 310 09/16/2022, 12:25 PM Last Post: tommy1729 tommy's displacement equation tommy1729 1 300 09/16/2022, 12:24 PM Last Post: tommy1729 semi-group homomorphism and tommy's U-tetration tommy1729 5 591 08/12/2022, 08:14 PM Last Post: tommy1729 The Etas and Euler Numbers of the 2Sinh Method Catullus 2 488 07/18/2022, 10:01 AM Last Post: Catullus A Limit Involving 2sinh Catullus 0 347 07/17/2022, 06:15 AM Last Post: Catullus Tommy's Gaussian method. tommy1729 34 11,528 06/28/2022, 02:23 PM Last Post: tommy1729

Users browsing this thread: 1 Guest(s)