Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Arguments for the beta method not being Kneser's method
(10/22/2021, 03:54 AM)JmsNxn Wrote: ...  fascinating, Sheldon.... I'm a little dumbfounded by how you are calculating logrho so fast about the singularity--but it makes sense for the most part.

Hey James,

Now lets define a function \(\text{logrho}(z)=\ln(-\rho(z))\) where I'll use the shorthand notation \(l\rho(z)\) for the remainder of this post.  Lets start with the following from my previous post, again this is for the 2pii periodic beta(z,1).

f_0(z)=\beta(z)-\ln(1+\exp(-z));\;\;\; f_n(z) = \ln^{\circ n}f(z+n)\\

Now lets change the recursive equation for \(\rho\) to a recursive equation for \(l\rho\)
l\rho_n(z)=\ln\bigg(-\ln\Big(1-\exp\big( l\rho_{n-1}(z+1) - f_{n-1}(z)  \big) \Big) \bigg)\\
\end{align} $$

Next I implemented in pari-gp a routine I called loglogmexp(z) which implements the following:
l\rho_n(z)=\text{loglogmexp}\big( \rho_{n-1}(z+1) - f_{n-1}(z)\big);\;\;\; y=\rho_{n-1}(z+1)-f_{n-1}(z)\\

Now, often times \(\Re(y)\) is large enough negative, that we can replace the inner most \(-\ln\big(1-\exp(y) \big)\) with the approximation of: \(\exp(y)\)!!  If we are closer to the singularity then I implemented either a more exact series, or else directly implemented the exponents and logarithms.  But for n=4, for most cases this is an extremely accurate approximation.  This approximation is accurate to >=~60 decimal digits at a radius of less than 99.998% of the radius of convergence! 
l\rho_n(z) \approx   l\rho_{n-1}(z+1) - f_{n-1}(z)  \\
l\rho_n(z) \approx  \ln\Big(\ln\big(1+\exp(-z-n)\big)\Big)-\sum_{i=1}^{n}f_{i-1}(z+n-i)\\
\end{align} $$
edit and update: The equation above is dominated by \(f_0(z+n-1)\) or if centering at Tet(0), \(e\uparrow\uparrow(z+n-1)\).  In my program, I call f(z,n), beta_tau(z,n).  You can see the individual contributions, by running "logrho_n(rr,4)" instead of logrho(rr,4).  
 -5.74639913386489   log(log(1+exp(-z-4)))
 -3814279.10476022  -beta_tau(z+3,0)
 -15.1542622414793  -beta_tau(z+2,1)
 -2.71828182845905  -beta_tau(z+1,2)
 -1.00000000000000  -beta_tau(z+0,3)

.gp (Size: 8.79 KB / Downloads: 21)
- Sheldon

Messages In This Thread
RE: Arguments for the beta method not being Kneser's method - by sheldonison - 10/23/2021, 03:13 AM

Possibly Related Threads...
Thread Author Replies Views Last Post
  Tommy's Gaussian method. tommy1729 24 3,952 11/11/2021, 12:58 AM
Last Post: JmsNxn
  Calculating the residues of \(\beta\); Laurent series; and Mittag-Leffler JmsNxn 0 156 10/29/2021, 11:44 PM
Last Post: JmsNxn
  The Generalized Gaussian Method (GGM) tommy1729 2 390 10/28/2021, 12:07 PM
Last Post: tommy1729
  tommy's singularity theorem and connection to kneser and gaussian method tommy1729 2 495 09/20/2021, 04:29 AM
Last Post: JmsNxn
  Why the beta-method is non-zero in the upper half plane JmsNxn 0 342 09/01/2021, 01:57 AM
Last Post: JmsNxn
  Reducing beta tetration to an asymptotic series, and a pull back JmsNxn 2 734 07/22/2021, 03:37 AM
Last Post: JmsNxn
  Improved infinite composition method tommy1729 5 1,280 07/10/2021, 04:07 AM
Last Post: JmsNxn
  Generalized Kneser superfunction trick (the iterated limit definition) MphLee 25 8,240 05/26/2021, 11:55 PM
Last Post: MphLee
  Alternative manners of expressing Kneser JmsNxn 1 901 03/19/2021, 01:02 AM
Last Post: JmsNxn
  A different approach to the base-change method JmsNxn 0 730 03/17/2021, 11:15 PM
Last Post: JmsNxn

Users browsing this thread: 2 Guest(s)