• 2 Vote(s) - 2 Average
• 1
• 2
• 3
• 4
• 5
 Holomorphic semi operators, using the beta method JmsNxn Ultimate Fellow Posts: 921 Threads: 111 Joined: Dec 2010 06/13/2022, 08:33 PM (06/12/2022, 11:13 PM)tommy1729 Wrote: (06/12/2022, 10:05 PM)JmsNxn Wrote: (06/12/2022, 01:50 PM)tommy1729 Wrote: Dear James your 2 last posts are inspirational but I cannot accept them at the moment - maybe later -. Here is why : it is not shown to be analytic in x,s,y and at the same time satisfy the superfunction property where x y is in a way the super of x y. I am not convinced that they can be united with x f(x) = x for some analytic f(x) and that that f(x) is almost free to choose.  ( the integers have to match with the defintions of x<0>y and x<1>y etc ofcourse * unless you let those be free to choose as well ) Not trying to be annoying  regards tommy1729 You have misinterpreted the notation. There is no solution $$x f(x) = x$$... At least, not in the purview of this solution. By construction I'm assuming $$x > e$$ and $$y > e$$, and there's no value $$x y = x$$ for these values. You asked if there is a value $$\varphi$$ such that $$x [s]_{\varphi} y = x$$. Which there is. This is just: $$x[s]_{\varphi} y = \exp^{\circ s}_{y^{1/y}}\left(\log^{\circ s}_{y^{1/y}}(x) + y + \varphi\right)\\$$ By which the answer is $$\varphi = - y$$ for the equation you asked to solve. This would not happen when we solve for the actual semi-operator, as there is no solution... I think you're mixing things up. Remember that $$x [s] y$$ is absolutely analytic in all variables. It just equals $$\exp^{\circ s}_{y^{1/y}}\left(\log^{\circ s}_{y^{1/y}}(x) + y\right)$$--which is absolutely analytic in all variables... The question is whether $$x y$$ can be found in a neighborhood of $$x [s] y$$ and be analytic. I understand I haven't shown this yet. But you're mixing things up. I know this thread is a mess, and very disorganized. I plan on writing up much more fluidly the observations, but I'm waiting until I have something concrete. oh yes. then we agree. but then the question becomes prove that there is NO solution : quote : " There is no solution $$x f(x) = x$$... ". For me that is cruxial to the actual hyperoperator.  regards tommy1729 Oh yes, this would follow from monotone in $$s$$. I'd need to show that $$x y$$ is monotone in $$s$$ then we're good. Because there's no solution at $$s=0$$ or at $$s=1$$ and at $$s=2$$. That's because this looks like $$x +y = x$$ and $$x\cdot y = x$$ and $$x^y = x$$, while $$x,y > e$$. But yes, not a proof, need monotone. « Next Oldest | Next Newest »

 Messages In This Thread Holomorphic semi operators, using the beta method - by JmsNxn - 03/23/2022, 03:19 AM RE: Holomorphic semi operators, using the beta method - by MphLee - 03/23/2022, 10:40 PM RE: Holomorphic semi operators, using the beta method - by JmsNxn - 03/24/2022, 09:35 AM RE: Holomorphic semi operators, using the beta method - by MphLee - 03/24/2022, 11:13 AM RE: Holomorphic semi operators, using the beta method - by JmsNxn - 03/24/2022, 12:00 PM RE: Holomorphic semi operators, using the beta method - by sheldonison - 04/22/2022, 06:14 PM RE: Holomorphic semi operators, using the beta method - by JmsNxn - 04/23/2022, 04:20 AM RE: Holomorphic semi operators, using the beta method - by MphLee - 04/01/2022, 10:23 AM RE: Holomorphic semi operators, using the beta method - by JmsNxn - 04/02/2022, 12:33 AM RE: Holomorphic semi operators, using the beta method - by JmsNxn - 04/04/2022, 03:48 AM RE: Holomorphic semi operators, using the beta method - by MphLee - 04/05/2022, 12:39 PM RE: Holomorphic semi operators, using the beta method - by JmsNxn - 04/06/2022, 02:28 AM RE: Holomorphic semi operators, using the beta method - by JmsNxn - 04/08/2022, 01:06 AM RE: Holomorphic semi operators, using the beta method - by MphLee - 04/08/2022, 11:45 AM RE: Holomorphic semi operators, using the beta method - by JmsNxn - 04/09/2022, 10:43 PM RE: Holomorphic semi operators, using the beta method - by JmsNxn - 04/14/2022, 04:08 AM RE: Holomorphic semi operators, using the beta method - by MphLee - 04/15/2022, 04:43 AM RE: Holomorphic semi operators, using the beta method - by JmsNxn - 04/19/2022, 03:08 AM RE: Holomorphic semi operators, using the beta method - by JmsNxn - 04/20/2022, 08:30 PM RE: Holomorphic semi operators, using the beta method - by JmsNxn - 04/27/2022, 02:00 AM RE: Holomorphic semi operators, using the beta method - by JmsNxn - 04/30/2022, 08:37 AM RE: Holomorphic semi operators, using the beta method - by MphLee - 05/01/2022, 04:48 PM RE: Holomorphic semi operators, using the beta method - by MphLee - 05/02/2022, 12:35 PM RE: Holomorphic semi operators, using the beta method - by JmsNxn - 05/02/2022, 06:49 PM RE: Holomorphic semi operators, using the beta method - by MphLee - 05/02/2022, 07:25 PM RE: Holomorphic semi operators, using the beta method - by JmsNxn - 05/02/2022, 09:40 PM RE: Holomorphic semi operators, using the beta method - by tommy1729 - 05/03/2022, 12:16 PM RE: Holomorphic semi operators, using the beta method - by JmsNxn - 05/04/2022, 10:31 PM RE: Holomorphic semi operators, using the beta method - by tommy1729 - 05/05/2022, 11:03 PM RE: Holomorphic semi operators, using the beta method - by JmsNxn - 05/06/2022, 09:07 PM RE: Holomorphic semi operators, using the beta method - by MphLee - 05/03/2022, 01:20 PM RE: Holomorphic semi operators, using the beta method - by tommy1729 - 05/04/2022, 12:25 PM RE: Holomorphic semi operators, using the beta method - by tommy1729 - 05/05/2022, 11:01 PM RE: Holomorphic semi operators, using the beta method - by JmsNxn - 05/08/2022, 07:41 PM RE: Holomorphic semi operators, using the beta method - by MphLee - 05/08/2022, 09:30 PM RE: Holomorphic semi operators, using the beta method - by JmsNxn - 05/08/2022, 11:18 PM RE: Holomorphic semi operators, using the beta method - by MphLee - 05/08/2022, 11:40 PM RE: Holomorphic semi operators, using the beta method - by JmsNxn - 05/08/2022, 11:52 PM RE: Holomorphic semi operators, using the beta method - by tommy1729 - 05/10/2022, 11:38 AM RE: Holomorphic semi operators, using the beta method - by JmsNxn - 05/10/2022, 08:29 PM RE: Holomorphic semi operators, using the beta method - by tommy1729 - 05/26/2022, 10:00 PM RE: Holomorphic semi operators, using the beta method - by JmsNxn - 05/26/2022, 10:18 PM RE: Holomorphic semi operators, using the beta method - by tommy1729 - 05/26/2022, 10:44 PM RE: Holomorphic semi operators, using the beta method - by JmsNxn - 05/26/2022, 10:49 PM RE: Holomorphic semi operators, using the beta method - by tommy1729 - 05/26/2022, 11:24 PM RE: Holomorphic semi operators, using the beta method - by tommy1729 - 05/20/2022, 12:14 PM RE: Holomorphic semi operators, using the beta method - by JmsNxn - 05/21/2022, 10:37 PM RE: Holomorphic semi operators, using the beta method - by MphLee - 05/10/2022, 12:26 PM RE: Holomorphic semi operators, using the beta method - by JmsNxn - 05/13/2022, 04:28 AM RE: Holomorphic semi operators, using the beta method - by MphLee - 05/13/2022, 08:17 AM RE: Holomorphic semi operators, using the beta method - by JmsNxn - 05/17/2022, 02:21 AM RE: Holomorphic semi operators, using the beta method - by tommy1729 - 05/22/2022, 12:17 AM RE: Holomorphic semi operators, using the beta method - by JmsNxn - 05/22/2022, 01:29 AM RE: Holomorphic semi operators, using the beta method - by JmsNxn - 05/25/2022, 04:04 AM RE: Holomorphic semi operators, using the beta method - by tommy1729 - 05/26/2022, 09:04 PM RE: Holomorphic semi operators, using the beta method - by MphLee - 05/26/2022, 11:33 PM RE: Holomorphic semi operators, using the beta method - by JmsNxn - 05/26/2022, 11:46 PM RE: Holomorphic semi operators, using the beta method - by MphLee - 05/27/2022, 12:17 AM RE: Holomorphic semi operators, using the beta method - by JmsNxn - 05/26/2022, 11:36 PM RE: Holomorphic semi operators, using the beta method - by JmsNxn - 05/29/2022, 06:11 AM RE: Holomorphic semi operators, using the beta method - by MphLee - 05/31/2022, 02:32 PM RE: Holomorphic semi operators, using the beta method - by JmsNxn - 06/02/2022, 01:24 AM RE: Holomorphic semi operators, using the beta method - by MphLee - 05/31/2022, 09:24 AM RE: Holomorphic semi operators, using the beta method - by tommy1729 - 06/11/2022, 12:27 PM RE: Holomorphic semi operators, using the beta method - by JmsNxn - 06/12/2022, 12:07 AM RE: Holomorphic semi operators, using the beta method - by tommy1729 - 06/12/2022, 12:09 AM RE: Holomorphic semi operators, using the beta method - by JmsNxn - 06/12/2022, 01:00 AM RE: Holomorphic semi operators, using the beta method - by JmsNxn - 06/12/2022, 03:12 AM RE: Holomorphic semi operators, using the beta method - by tommy1729 - 06/12/2022, 01:50 PM RE: Holomorphic semi operators, using the beta method - by JmsNxn - 06/12/2022, 10:05 PM RE: Holomorphic semi operators, using the beta method - by tommy1729 - 06/12/2022, 11:13 PM RE: Holomorphic semi operators, using the beta method - by JmsNxn - 06/13/2022, 08:33 PM

 Possibly Related Threads… Thread Author Replies Views Last Post The modified Bennet Operators, and their Abel functions JmsNxn 6 248 07/22/2022, 12:55 AM Last Post: JmsNxn The $$\varphi$$ method of semi operators, the first half of my research JmsNxn 13 702 07/17/2022, 05:42 AM Last Post: JmsNxn The bounded analytic semiHyper-operators JmsNxn 4 7,758 06/29/2022, 11:46 PM Last Post: JmsNxn Hyper operators in computability theory JmsNxn 5 10,862 02/15/2017, 10:07 PM Last Post: MphLee Recursive formula generating bounded hyper-operators JmsNxn 0 3,717 01/17/2017, 05:10 AM Last Post: JmsNxn Rational operators (a {t} b); a,b > e solved JmsNxn 30 75,495 09/02/2016, 02:11 AM Last Post: tommy1729 holomorphic binary operators over naturals; generalized hyper operators JmsNxn 15 31,265 08/22/2016, 12:19 AM Last Post: JmsNxn Bounded Analytic Hyper operators JmsNxn 25 43,488 04/01/2015, 06:09 PM Last Post: MphLee Incredible reduction for Hyper operators JmsNxn 0 4,287 02/13/2014, 06:20 PM Last Post: JmsNxn interpolating the hyper operators JmsNxn 3 9,664 06/07/2013, 09:03 PM Last Post: JmsNxn

Users browsing this thread: 1 Guest(s)