Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Attempt to formally generalize log, exp functions to 3,4,5..(n,m) log exp
#5
So the solution to f(x^y) =f(x)*f(y) is that there does not exist a contionuos real function defined on reals>=0 such that f(x) is not 1 or 0 for all x.

Right?

Then the only option is to look for more interesting solution outside ( or rather, in between) real numbers.

If between any 2 real numbers there is a certain (e.g. infinite) amount of e.g. hyperreal numbers, than, for the purposes of this function, one can try to decide what function of hyperreals would satisfy this equation.

What is required is that such function has to have values 0 and 1 for all reals.

So for x=real , x>=0 f(x) = 1 or 0. We can choose 2 hyperreal values infinitely close to any real number x- e.g on both sides of it- so that one of them h1(x) < x would give value f(h1(x))=0, while other h2(x)>x would give value of function f(h2(x))=1.

Then we have a function f( h1(x), h2(x)) = 0 if arg=h1(x), 1 if arg=h2(x).)

Since h1(x) and h2(x) is infinitely close to x, in reals this function falls apart into 2 separate functions, or one that is not quite continuous.

In this case, f becomes a function only of hyperreals as it is 2 constant functions reals. We can use either discrete function which oscillates between 1 and 0 like

f(h(x)) = 1,0,1,0,1,0,1 for any 2 consequtive hyperreals in interval between 2 reals, or

we can form a one to one correspondence between all hyperreal interval between 2 neighbouring real numbers and Pi/2 and then f(h(x)) = sin (h(x)) where h1(x) = pi/2 and h2(x) = 0.

This correspondence between hyperreals and pi/2 is something I can not handle yet. Has it ever been shown what is the cardinality of hyperreals and what is the cardinality of pi/2?

Ivars
Reply


Messages In This Thread
RE: Attempt to formally generalize log, exp functions to 3,4,5..(n,m) log exp - by Ivars - 06/02/2008, 07:15 PM

Possibly Related Threads...
Thread Author Replies Views Last Post
  The AB functions ! tommy1729 0 1,948 04/04/2017, 11:00 PM
Last Post: tommy1729
  the inverse ackerman functions JmsNxn 3 6,868 09/18/2016, 11:02 AM
Last Post: Xorter
  Look-alike functions. tommy1729 1 2,507 03/08/2016, 07:10 PM
Last Post: hixidom
  Inverse power tower functions tommy1729 0 2,221 01/04/2016, 12:03 PM
Last Post: tommy1729
  [2014] composition of 3 functions. tommy1729 0 2,107 08/25/2014, 12:08 AM
Last Post: tommy1729
  Intresting functions not ? tommy1729 4 6,065 03/05/2014, 06:49 PM
Last Post: razrushil
  generalizing the problem of fractional analytic Ackermann functions JmsNxn 17 25,843 11/24/2011, 01:18 AM
Last Post: JmsNxn
  Discrete-analytic functions Ansus 4 6,545 07/30/2011, 04:46 PM
Last Post: tommy1729
  product functions tommy1729 5 7,422 06/01/2011, 05:38 PM
Last Post: tommy1729
  Periodic functions that are periodic not by addition JmsNxn 0 3,076 04/17/2011, 09:54 PM
Last Post: JmsNxn



Users browsing this thread: 1 Guest(s)