Approaches to Tetration
#1
Code:
- Approaches to tetration

  We may classify the approaches to tetration in two classes: a "binary operator
  approach" and an "iterative series approach"

  -- the operator approach ----------------------------------

  Here one tries to extend the hierarchy of binary operator
   a+b : addition      a*b : multiplication    a^b : exponentiation    a^^b : tetration
  in a meaningful way
  
  Extensions of this are made in two ways
  assigning an index to the operation and to evolve this
  to higher or lesser indices
   a[0]b : "zeration"       a[1]b : addition     a[2]b : multiplication
   a[3]b : exponentiation   a[4]b : tetration    a[5]b : pentation
    ...
[see links]

  * Ackermann-function
  Closely related is the concept of the Ackermann-function
  A(a,index,iterate)
  [see: Ackermann-function, <literature>]
  
  * Reihenalgebra

  Even an approach to extend this operator-hierarchy to fractional indices is known
  where the index was adapted:
  
                  a[1]x : "do nothing"
   a[2]x : add one to a     a[1/2]b : subtract one // unary operator
   a[3]b : addition         a[1/3]b : subtraction
   a[4]b : multiplication   a[1/4]b : division
   a[5]b : exponentiation   a[1/5,subscript]b : inverses root or logarithm
   a[6]b : tetration        a[1/6,subscript]b : inverses depending on evaluation-precedence
   ...

  The author tried then to find meaningful interpolations for this indexing scheme.
  [markus Müller, Reihenalgebra]


  -- the iterative series approach -----------------------------------------
  
  Here operations/functions are expressed as series; for instance the operation
  of exponentiation as powerseries, such that
  
   exp(x) = 1 + x + x^2/2 + ...

  and then iteration

   exp°2(x) = exp(exp(x)) = 1 + exp(x) + exp(x)^2/2! + ...
                          = K + Ax + Bx^2 + Cx^3 + ...

   --- powerseries
  
   The most common approach, see for instance []
    b^x     = 1 + log(b)x + log(b)^2 x^2/2! +...
    (b,x)°1 = b^x
    (b,x)°2 = b^(b^x) = 1 + log(b)b^x + log(b)^2 b^2x/2! + ...
    (b,x)°h = (b,b^x)°(h-1)
    
    The needed manipulations on powerseries are sometimes explicitely
    expressed in matrix-notation [see links]

   ---functions defined by general series ( dirichlet-like series,..)

    The needed calculations are performed using derivatives of the functions
    in the places where for powerseries we use their coefficients

       [see Bell-matrix, Carleman-matrix]
      
   --- series on integer iterates of the function itself

     (b,x)°h = A x + B*(b,x)°1 + C*(b,x)°2 + ...
     [for instance see : binomial expansion]
    
  The iterative series approach implies also a different view: one assumes
  an "initial-value" x, to which the operation is applied iteration-times
  which then gives a final value.
  
  So in
    (b,x)°h we have a ternary operation where we apply the exponentiation
    using base b h-times to the initial-value x.

  This paradigm is followed in [see: dynamical systems, iteration theory, ... ]
  
  The reverse-engineering of this paradigm leads then to the redefinition of
  the common "binary operators" using the iteration-form (we use a local,
  one-way notation here)
  
                b occurs h times
  ---------------------------------  -------------------
  (+,b,x)°h  :  x + b + b + ... b  : iterated addition
  (+,b,x)°-h :  x - b - b - ... b  : iterated subtraction

  (*,b,x)°h :  x * b * b * ... b   : iterated multiplication
  (*,b,x)°-h : x / b / b / ... b   : iterated division

  (^,b,x)°h :  b^ b ^ ... b^x      : iterated exponentiation, right associative
  (^,b,x)°-h : Log_b(Log_b(...Log_b(x)))

  Though for iterated addition and multiplication no powerseries is required,
  they may be consistently expressed the same way using matrix-operators on
  formal powerseries, which perform addition, multiplication and exponentiation
  in the ring of formal powerseries according to this scheme [see link]
  
  The latter form of notation (or some convenient adaptions [see "notations"])
  like exp_b°h(x) for (^,b,x)°h allows then to write the iteration-scheme
  for any function, for instance
  
  (dxp,b,x)°h = dxp_b°h(x) :  where dxp_b(x):= b^x - 1
  (sin,b,x)°h = sin_b°h(x) :  where sin_b(x):= i*(b^(ix) - b^(-ix))/2

  --- Connection between series-iteration and operator paradigms ------------

  The common binary operators can then be seen as reduced forms
  of the series-iteration approach
  
  a + b        == (+,b,a)°1
  a + b + b
     = a + 2*b == (+,b,a)°2
  a - b        == (+,b,a)°-1
  b - b  = 0   == (+,b,b)°-1
  b + b  = 2*b == (+,b,b)°1 = (+,b,(+,b,b)°-1))°2 = (+,b,0)°2
               == (*,b,2)°1
  
  
  a * b      == (*,b,a)°1
  a * b * b
     = a*b^2 == (+,b,a)°2
  a / b      == (*,b,a)°-1
  b / b = 1  == (*,b,b)°-1
  b * b      == (*,b,b)°1 = (*,b,(*,b,b)°-1))°2 = (*,b,1)°2
             == (^,b,2)°1



  b ^ a        == (^,b,a)°1
  b ^(b ^ a)   == (^,b,a)°2
  log_b(a)     == (^,b,a)°-1
  log_b(b) = 1 == (^,b,b)°-1
  b ^ b        == (^,b,b)°1 = (^,b,(^,b,b)°-1))°2 = (^,b,1)°2
Gottfried Helms, Kassel
Reply


Messages In This Thread
Approaches to Tetration - by Gottfried - 07/17/2008, 10:43 AM



Users browsing this thread: 1 Guest(s)