• 0 Vote(s) - 0 Average
• 1
• 2
• 3
• 4
• 5
 Dmitrii Kouznetsov's Tetration Extension bo198214 Administrator Posts: 1,389 Threads: 90 Joined: Aug 2007 04/21/2008, 10:41 PM (This post was last modified: 04/25/2008, 04:09 PM by bo198214.) andydude Wrote:See Analytic solution of F(z+1)=exp(F(z)) in complex z-plane for more information. About the uniqueness: It is well known that if we have a solution $\alpha$ of the Abel equation $\alpha(z+1)=f(\alpha(z))$ then for any 1-periodic function $\phi$ also $\beta(z)=\alpha(z+\phi(z))$ is a solution to the Abel equation. (Because $\beta(z+1)=\alpha(z+1+\phi(z+1))=\alpha(z+\phi(z)+1)=f(\alpha(z+\phi(z))=f( \beta( z))$). So let $F$ be one solution of (*) $F(z+1)=\exp(F(z))$ with (**) $\lim_{y\to\infty} F(x+iy) = L$ and $\lim_{y\to -\infty} F(x+iy)=L^\ast$ then $G(z)=G(z+\sin(2\pi z))$ is another solution of (*). Let us now consider (**). We know that $\sin(z)=-i\frac{e^{iz}-e^{-iz}}{2}$ and $\sin(x+iy)=i\frac{-e^{ix}e^{-y}+e^{-ix}e^y}{2}$ $G(x+iy)=F\left(x+iy+i\frac{-e^{2\pi ix}e^{-2\pi y}+e^{-2\pi ix}e^{2\pi y}}{2}\right)$. As $e^{-2\pi y}\to 0$ at least for x=0 also $\lim_{y\to\infty} G(iy)=\lim_{y\to\infty} F(i(y+e^{2\pi y}))=L$  fixed some negligences. [/edit] « Next Oldest | Next Newest »

 Messages In This Thread Dmitrii Kouznetsov's Tetration Extension - by andydude - 04/16/2008, 10:16 PM RE: Dmitrii Kouznetsov's Tetration Extension - by bo198214 - 04/21/2008, 10:41 PM RE: Dmitrii Kouznetsov's Tetration Extension - by Kouznetsov - 04/22/2008, 12:59 AM RE: Dmitrii Kouznetsov's Tetration Extension - by bo198214 - 04/22/2008, 08:18 AM RE: Dmitrii Kouznetsov's Tetration Extension - by Kouznetsov - 04/24/2008, 01:02 AM RE: Dmitrii Kouznetsov's Tetration Extension - by bo198214 - 04/25/2008, 04:06 PM RE: Dmitrii Kouznetsov's Tetration Extension - by Kouznetsov - 04/26/2008, 02:12 AM RE: Dmitrii Kouznetsov's Tetration Extension - by bo198214 - 04/26/2008, 06:26 PM RE: Dmitrii Kouznetsov's Tetration Extension - by bo198214 - 05/17/2008, 03:22 PM RE: Dmitrii Kouznetsov's Tetration Extension - by Kouznetsov - 05/18/2008, 05:31 AM RE: Dmitrii Kouznetsov's Tetration Extension - by bo198214 - 05/18/2008, 05:09 PM RE: Dmitrii Kouznetsov's Tetration Extension - by Kouznetsov - 05/21/2008, 12:20 AM RE: Dmitrii Kouznetsov's Tetration Extension - by bo198214 - 05/21/2008, 06:22 AM RE: Dmitrii Kouznetsov's Tetration Extension - by Kouznetsov - 05/21/2008, 11:18 AM RE: Dmitrii Kouznetsov's Tetration Extension - by bo198214 - 05/22/2008, 07:12 PM RE: Dmitrii Kouznetsov's Tetration Extension - by Kouznetsov - 05/22/2008, 10:43 PM RE: Dmitrii Kouznetsov's Tetration Extension - by andydude - 05/22/2008, 10:59 PM RE: Dmitrii Kouznetsov's Tetration Extension - by Kouznetsov - 05/22/2008, 11:36 PM RE: Dmitrii Kouznetsov's Tetration Extension - by bo198214 - 05/23/2008, 06:21 AM RE: Dmitrii Kouznetsov's Tetration Extension - by Kouznetsov - 05/23/2008, 08:48 AM RE: Dmitrii Kouznetsov's Tetration Extension - by bo198214 - 05/23/2008, 10:09 AM RE: Dmitrii Kouznetsov's Tetration Extension - by Kouznetsov - 05/23/2008, 02:15 PM RE: Dmitrii Kouznetsov's Tetration Extension - by bo198214 - 05/23/2008, 03:47 PM RE: Dmitrii Kouznetsov's Tetration Extension - by Kouznetsov - 05/23/2008, 04:35 PM RE: Dmitrii Kouznetsov's Tetration Extension - by bo198214 - 05/23/2008, 05:52 PM RE: Dmitrii Kouznetsov's Tetration Extension - by Kouznetsov - 05/23/2008, 11:03 PM RE: Dmitrii Kouznetsov's Tetration Extension - by Kouznetsov - 05/24/2008, 05:36 AM RE: Dmitrii Kouznetsov's Tetration Extension - by bo198214 - 05/24/2008, 09:43 AM RE: Dmitrii Kouznetsov's Tetration Extension - by bo198214 - 05/24/2008, 09:53 AM RE: Dmitrii Kouznetsov's Tetration Extension - by Kouznetsov - 05/24/2008, 11:24 AM RE: Dmitrii Kouznetsov's Tetration Extension - by bo198214 - 05/24/2008, 11:39 AM RE: Dmitrii Kouznetsov's Tetration Extension - by Kouznetsov - 05/24/2008, 12:08 PM RE: Dmitrii Kouznetsov's Tetration Extension - by bo198214 - 05/26/2008, 07:01 AM RE: Dmitrii Kouznetsov's Tetration Extension - by Kouznetsov - 05/26/2008, 09:03 AM RE: Dmitrii Kouznetsov's Tetration Extension - by Kouznetsov - 05/27/2008, 03:58 PM RE: Dmitrii Kouznetsov's Tetration Extension - by Kouznetsov - 05/28/2008, 08:58 AM compare complex plot with matrix power method - by bo198214 - 10/09/2008, 10:21 PM RE: Dmitrii Kouznetsov's Tetration Extension - by Kouznetsov - 10/10/2008, 01:17 AM [split] Taylor series of upx function - by Kouznetsov - 11/20/2008, 01:31 AM

 Possibly Related Threads... Thread Author Replies Views Last Post Possible continuous extension of tetration to the reals Dasedes 0 1,375 10/10/2016, 04:57 AM Last Post: Dasedes Andrew Robbins' Tetration Extension bo198214 32 43,960 08/22/2016, 04:19 PM Last Post: Gottfried Kouznetsov-Tommy-Cauchy method tommy1729 0 2,066 02/18/2015, 07:05 PM Last Post: tommy1729 Non-trivial extension of max(n,1)-1 to the reals and its iteration. MphLee 3 3,934 05/17/2014, 07:10 PM Last Post: MphLee extension of the Ackermann function to operators less than addition JmsNxn 2 4,106 11/06/2011, 08:06 PM Last Post: JmsNxn about kouznetsov again tommy1729 1 3,207 08/13/2010, 05:41 AM Last Post: BenStandeven plz explain kouznetsov slowly tommy1729 7 7,850 07/27/2010, 04:57 AM Last Post: bo198214 Tetration Extension to Real Heights chobe 3 6,223 05/15/2010, 01:39 AM Last Post: bo198214 Tetration extension for bases between 1 and eta dantheman163 16 19,192 12/19/2009, 10:55 AM Last Post: bo198214 Extension of tetration to other branches mike3 15 21,057 10/28/2009, 07:42 AM Last Post: bo198214

Users browsing this thread: 1 Guest(s)