• 0 Vote(s) - 0 Average
• 1
• 2
• 3
• 4
• 5
 tetration base conversion, and sexp/slog limit equations sheldonison Long Time Fellow Posts: 644 Threads: 22 Joined: Oct 2008 01/04/2010, 06:08 AM (This post was last modified: 01/04/2010, 06:09 AM by sheldonison.) (01/04/2010, 03:51 AM)mike3 Wrote: Even thought it seems the the tet and cheta functions do this "ringing", how do you know two tet functions (to different bases) also do it? Remember how different they are on the complex plane.All of the bases show the same behavior, though more graphs might help to demonstrate it. The graph shows cheta lined up with five different bases, all exactly lined up at x=5.884, so that cheta(x) = sexp_b(x+k_b) = sexp_c(x+k_c) for all five bases. Since for increasing x, slog_a(sexp_b(x+1)) converges to slog_a(sexp_b(x))+1, the five super exponentials also agree again, at around x=6.884, 7884, 8.884, 9.884, etc. But, they disagree in between, and they disagree by different amounts with each base having a different magnitude of ringing in the slog (inverse sexp) domain, so they can't agree with each other either. In the slog domain, the magnitude of the ringing for cheta against base e is +/- 0.04%, but the magnitude for cheta against base 1.464 is only +/- 0.0015%, so sexp_e can't agree with sexp_1.464 in between either. Note, that as would be expeced, the magnitude of the ringing for slog_e(cheta) is the same as for inv_cheta(sexp_e). Also, all the bases are different in the complex plane too, with an infinity of singularities, as you repeatedly iterate logarithms of one base against the sexp of another base, though the only case that was shown was cheta and sexp_e. Also, ringing was shown for the four super functions of exp(sqrt(2)), see the bummer thread., so perhaps this shouldn't be as disturbing as it initially seems. - Shel « Next Oldest | Next Newest »

 Messages In This Thread tetration base conversion, and sexp/slog limit equations - by sheldonison - 02/18/2009, 07:01 AM RE: tetration base conversion, questions and results - by sheldonison - 02/19/2009, 12:10 AM tetration base conversion, uniqueness criterion? - by bo198214 - 02/19/2009, 04:24 PM RE: tetration base conversion, uniqueness criterion? - by sheldonison - 02/20/2009, 10:54 AM RE: tetration base conversion, uniqueness criterion? - by bo198214 - 02/20/2009, 01:07 PM RE: tetration base conversion, uniqueness criterion? - by sheldonison - 02/20/2009, 02:51 PM RE: tetration base conversion, uniqueness criterion? - by sheldonison - 02/21/2009, 12:18 AM RE: tetration base conversion, uniqueness criterion? - by bo198214 - 02/21/2009, 12:39 PM RE: tetration base conversion, uniqueness criterion? - by sheldonison - 02/21/2009, 02:59 PM RE: tetration base conversion, uniqueness criterion? - by bo198214 - 02/21/2009, 06:36 PM RE: tetration base conversion, uniqueness criterion? - by sheldonison - 02/22/2009, 04:41 AM RE: tetration base conversion, uniqueness criterion? - by sheldonison - 02/22/2009, 04:04 PM RE: tetration base conversion, uniqueness criterion? - by sheldonison - 02/24/2009, 08:24 PM RE: tetration base conversion, uniqueness criterion? - by bo198214 - 02/24/2009, 09:57 PM RE: tetration base conversion, uniqueness criterion? - by bo198214 - 02/24/2009, 10:21 PM RE: tetration base conversion, uniqueness criterion? - by sheldonison - 02/24/2009, 10:54 PM RE: tetration base conversion, uniqueness criterion? - by bo198214 - 02/24/2009, 11:06 PM RE: tetration base conversion, and sexp/slog limit equations - by sheldonison - 02/26/2009, 11:04 AM RE: tetration base conversion, and sexp/slog limit equations - by bo198214 - 02/26/2009, 12:16 PM RE: tetration base conversion, and sexp/slog limit equations - by sheldonison - 02/26/2009, 02:36 PM RE: tetration base conversion, and sexp/slog limit equations - by sheldonison - 02/28/2009, 05:56 AM RE: tetration base conversion, and sexp/slog limit equations - by sheldonison - 02/28/2009, 10:01 AM RE: tetration base conversion, and sexp/slog limit equations - by sheldonison - 03/01/2009, 12:18 PM RE: tetration base conversion, and sexp/slog limit equations - by sheldonison - 03/03/2009, 06:15 PM RE: tetration base conversion, and sexp/slog limit equations - by bo198214 - 03/03/2009, 06:46 PM RE: tetration base conversion, and sexp/slog limit equations - by sheldonison - 03/03/2009, 07:27 PM RE: tetration base conversion, and sexp/slog limit equations - by sheldonison - 03/09/2009, 06:34 PM Summay tetration base conversion, and sexp/slog limit equations - by sheldonison - 07/31/2009, 06:55 PM RE: Summay tetration base conversion, and sexp/slog limit equations - by sheldonison - 08/01/2009, 10:32 AM Is it analytic? - by sheldonison - 12/22/2009, 11:39 PM RE: tetration base conversion, and sexp/slog limit equations - by mike3 - 12/25/2009, 08:51 PM RE: tetration base conversion, and sexp/slog limit equations - by sheldonison - 12/26/2009, 01:44 AM RE: tetration base conversion, and sexp/slog limit equations - by mike3 - 12/26/2009, 01:54 AM RE: tetration base conversion, and sexp/slog limit equations - by sheldonison - 12/27/2009, 06:53 AM RE: tetration base conversion, and sexp/slog limit equations - by mike3 - 12/31/2009, 11:45 PM Inherent ringing in tetration, re: base conversion - by sheldonison - 01/02/2010, 05:31 AM RE: Inherent ringing in tetration, base conversion - by mike3 - 01/04/2010, 03:51 AM RE: Inherent ringing in tetration, base conversion - by sheldonison - 01/04/2010, 06:08 AM RE: tetration base conversion, and sexp/slog limit equations - by tommy1729 - 02/26/2013, 10:47 PM RE: tetration base conversion, and sexp/slog limit equations - by sheldonison - 02/27/2013, 07:05 PM

 Possibly Related Threads... Thread Author Replies Views Last Post New Quantum Algorithms (Carleman linearization) Finally Crack Nonlinear Equations Daniel 2 144 01/10/2021, 12:33 AM Last Post: marraco Moving between Abel's and Schroeder's Functional Equations Daniel 1 1,758 01/16/2020, 10:08 PM Last Post: sheldonison Complex Tetration, to base exp(1/e) Ember Edison 7 6,263 08/14/2019, 09:15 AM Last Post: sheldonison Is bounded tetration is analytic in the base argument? JmsNxn 0 2,200 01/02/2017, 06:38 AM Last Post: JmsNxn Sexp redefined ? Exp^[a]( - 00 ). + question ( TPID 19 ??) tommy1729 0 2,438 09/06/2016, 04:23 PM Last Post: tommy1729 Taylor polynomial. System of equations for the coefficients. marraco 17 23,363 08/23/2016, 11:25 AM Last Post: Gottfried Dangerous limits ... Tommy's limit paradox tommy1729 0 2,706 11/27/2015, 12:36 AM Last Post: tommy1729 tetration limit ?? tommy1729 40 67,589 06/15/2015, 01:00 AM Last Post: sheldonison Some slog stuff tommy1729 15 18,885 05/14/2015, 09:25 PM Last Post: tommy1729 Totient equations tommy1729 0 2,587 05/08/2015, 11:20 PM Last Post: tommy1729

Users browsing this thread: 2 Guest(s)