Thread Rating:
  • 1 Vote(s) - 5 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Iteration exercises: f(x)=x^2 - 0.5 ; Fixpoint-irritation...
#22
(10/20/2017, 06:00 PM)sheldonison Wrote: For example, here is the pari-gp program for the formal inverse schroeder function.  I don't know how to turn this into a matrix function, but not many programming languages support the powerful polyonomial functions that pari-gp has.

Code:
formalischroder(fx,n) = {
  local(lambda,i,j,z,f1t,f2t,ns,f1s);
  lambda = polcoeff(fx,1);
  f1t=x;
  i=2;
  while (i<=n,
    f1s=f1t;
    f1t=f1t+acoeff*x^i+O(x^(i+1));
    f2t=subst(f1t,x,lambda*x)-subst(fx+O(x^(i+1)),x,f1t);
    z = polcoeff(f2t, i);
    z = subst(z,acoeff,x);
    ns=-polcoeff(z,0)/polcoeff(z,1);
    f1t=f1s+ns*x^i;
    i++;
  );
  return(Pol(f1t));
}
fz1=x^2+(1-sqrt(3))*x;
lambda1=polcoeff(fz2,1);
fs1=formalischroder(fz2,20);
superfunction1(z)=subst(fs2,x,lambda2^z);

Sheldon - I find some unexplained terms: what is "acoeff" / how is this defined before it is queried for "f1t"?

the same with "fz2" in "lambda1=pol..." and "fs2" in "superfuncion...subst(fs2..."           

-------
Hmm, I replaced that unexplained by the best what I could assume   ("acoeff" as indeterminate first which shall be valued later by reference in "subst(...)")

Code:
\\ Sheldon's code::
fz1=x^2+(1-sqrt(3))*x
lambda1=polcoeff(fz1,1)
fs1=formalischroder(fz1,20)
superfunction1(z)=subst(fs1,x,lambda1^z)
This gives for me:
Code:
fs1 = x + 0.788675134595*x^2 + 4.64273441009*x^3 + 9.72047587679*x^4 + 51.2905072562*x^5 + O(x^6)  

so it seems the insertions of mine are possibly correct.                 

Now here is the computation with my matrix-toolbox:

Code:
fz1 = x^2 + (1- sqrt(3))*x            \\ use your function
F = mkCarleman ( polcoeffs(fz1,32) )  \\ procedure to make a carlemanmatrix from polynomial or series
F_eigen = tri_eigen(F)                \\ my diagonalization for triangular matrices gives M,D,M^-1 in
                                      \\ a result vector as components 2,3 and 4
Schr    = F_eigen[2][,2]              \\ put the coeffs for the Schröder function
                                      \\   from column 2 of M into separate vector                 
lam     = F_eigen[3][2]               \\ put the eigenvalue from D-component into variable "lam"
SchrInv = F_eigen[4][,2]              \\ put the coeffs for the Inverse Schröder function
                                      \\   from column 2 of M^-1 into separate vector                 
Ser(SchrInv) + O(x^6)                 \\ display inverse Schroeder function as a series
\\ ------
%77 = x + 0.788675134595*x^2 + 4.642734410*x^3 + 9.72047587679*x^4 + 51.2905072562*x^5 + O(x^6)
Gottfried Helms, Kassel
Reply


Messages In This Thread
RE: Iteration exercises: f(x)=x^2 - 0.5 ; Fixpoint-irritation... - by Gottfried - 10/20/2017, 07:55 PM

Possibly Related Threads...
Thread Author Replies Views Last Post
  (Again) fixpoint outside Period tommy1729 2 3,187 02/05/2017, 09:42 AM
Last Post: tommy1729
  Polygon cyclic fixpoint conjecture tommy1729 1 2,754 05/18/2016, 12:26 PM
Last Post: tommy1729
  The " outside " fixpoint ? tommy1729 0 1,815 03/18/2016, 01:16 PM
Last Post: tommy1729
  2 fixpoint pairs [2015] tommy1729 0 2,131 02/18/2015, 11:29 PM
Last Post: tommy1729
  [2014] The secondary fixpoint issue. tommy1729 2 4,351 06/15/2014, 08:17 PM
Last Post: tommy1729
  Simple method for half iterate NOT based on a fixpoint. tommy1729 2 4,070 04/30/2013, 09:33 PM
Last Post: tommy1729
  Iteration exercises: Lucas-Lehmer-test and Schröder-function Gottfried 0 2,992 04/04/2012, 06:17 AM
Last Post: Gottfried
  Iteration series: Different fixpoints and iteration series (of an example polynomial) Gottfried 0 3,279 09/04/2011, 05:59 AM
Last Post: Gottfried
  Fractional iteration of x^2+1 at infinity and fractional iteration of exp bo198214 10 19,101 06/09/2011, 05:56 AM
Last Post: bo198214
  2 fixpoint failure tommy1729 1 3,321 11/13/2010, 12:25 AM
Last Post: tommy1729



Users browsing this thread: 1 Guest(s)