Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
fractional powers of function inversion (was: changing terminology)
#5
(08/11/2009, 12:02 PM)Gottfried Wrote: and fractional "iterates of inversion" is then multivalued with complex heights according to the complex roots of -1

inv°[s](f(x)) = f°[(-1)^s](x)

Ya true, for iteration operators we dont need a new technique for general operator iteration, it can be reduced to powers of the exponent .
Reply


Messages In This Thread
RE: fractional powers of function inversion (was: changing terminology) - by bo198214 - 08/11/2009, 01:07 PM

Possibly Related Threads...
Thread Author Replies Views Last Post
  Is there a function space for tetration? Chenjesu 0 147 06/23/2019, 08:24 PM
Last Post: Chenjesu
  Degamma function Xorter 0 638 10/22/2018, 11:29 AM
Last Post: Xorter
  Are there any reputable sources verifying terminology? Chenjesu 0 669 08/09/2018, 08:20 PM
Last Post: Chenjesu
  Math overflow question on fractional exponential iterations sheldonison 4 2,976 04/01/2018, 03:09 AM
Last Post: JmsNxn
  Should tetration be a multivalued function? marraco 17 14,729 01/14/2016, 04:24 AM
Last Post: marraco
  Introducing new special function : Lambert_t(z,r) tommy1729 2 3,187 01/10/2016, 06:14 PM
Last Post: tommy1729
Sad Tommy-Mandelbrot function tommy1729 0 1,752 04/21/2015, 01:02 PM
Last Post: tommy1729
  [MSE] Fixed point and fractional iteration of a map MphLee 0 1,906 01/08/2015, 03:02 PM
Last Post: MphLee
  Fractional calculus and tetration JmsNxn 5 6,597 11/20/2014, 11:16 PM
Last Post: JmsNxn
  Theorem in fractional calculus needed for hyperoperators JmsNxn 5 5,976 07/07/2014, 06:47 PM
Last Post: MphLee



Users browsing this thread: 1 Guest(s)