10/24/2009, 08:13 PM

(10/24/2009, 08:01 PM)mike3 Wrote: Actually it does seem to converge. The problem is that it seems to converge to the same value for every z in such cases. I.e., converging to a constant function.

Interesting!

Quote: There are uncountably many such limit values, yet as constant functions they are "analytically incompatible" (is that a real term?) with the function (you can't analytically continue a constant function to tetration!)

Well, each constant fixed point of b^x is a tetration! I.e. it satisfies c(z+1)=b^c(z).

Does it converge to fixed points?