07/07/2014, 11:56 PM
A few comments
sexp(z+wave(z)) has derivative
sexp ' (z+wave(z)) (1 + wave'(z))
Therefore the techniques from the first few posts relate the solution of TPID 4 to the boundedness conjecture under some condition :
CONDITION => If sexp(z) is bounded then so is sexp ' (z) in the relevant strip.
That condition is a conjecture that needs to be proven !!
A related thing
Let CP be the continuum product.
Is it NECC true that
IF
sexp ' (z) = CP [sexp(z)]
THEN
sexp ' (z + wave(z)) = ( CP [sexp(z)] ) (1 + wave ' (z)) = CP[sexp(z+wave(z))]
And how do these concepts of continuum product , derivative , boundedness etc " really " relate ?
Ok that last is a vague question , but still.
regards
tommy1729
sexp(z+wave(z)) has derivative
sexp ' (z+wave(z)) (1 + wave'(z))
Therefore the techniques from the first few posts relate the solution of TPID 4 to the boundedness conjecture under some condition :
CONDITION => If sexp(z) is bounded then so is sexp ' (z) in the relevant strip.
That condition is a conjecture that needs to be proven !!
A related thing
Let CP be the continuum product.
Is it NECC true that
IF
sexp ' (z) = CP [sexp(z)]
THEN
sexp ' (z + wave(z)) = ( CP [sexp(z)] ) (1 + wave ' (z)) = CP[sexp(z+wave(z))]
And how do these concepts of continuum product , derivative , boundedness etc " really " relate ?
Ok that last is a vague question , but still.
regards
tommy1729