Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Matrix-method: compare use of different fixpoints
#8
Gottfried Wrote:Now consider this backways. Using another fixpoint y1 this relation holds again,
y1 = s^y1
V(y1)~ * Bs = V(s^y1)~ = V(y1)~
First row of W1^-1 is V(y1)~
and W0^-1 <> W1^-1 in their first rows and supposedly the same for the whole matrices W0 <> W1 and

W1^-1 * Bs = D1 * W1^-1

is another solution, provided that the form of the first row in W1^-1 is still that of a powerseries.

Sorry, the Eigensystem decomposition for Bs truncated to n is unqiue (up to permutations of eigenvalues), how can there be two solutions???
Reply


Messages In This Thread
RE: Matrix-method: compare use of different fixpoints - by bo198214 - 11/07/2007, 01:57 PM

Possibly Related Threads...
Thread Author Replies Views Last Post
  The Promised Matrix Add On; Abel_M.gp JmsNxn 2 618 08/21/2021, 03:18 AM
Last Post: JmsNxn
  Revisting my accelerated slog solution using Abel matrix inversion jaydfox 22 31,330 05/16/2021, 11:51 AM
Last Post: Gottfried
  Which method is currently "the best"? MorgothV8 2 7,743 11/15/2013, 03:42 PM
Last Post: MorgothV8
  "Kneser"/Riemann mapping method code for *complex* bases mike3 2 10,091 08/15/2011, 03:14 PM
Last Post: Gottfried
  An incremental method to compute (Abel) matrix inverses bo198214 3 13,153 07/20/2010, 12:13 PM
Last Post: Gottfried
  SAGE code for computing flow matrix for exp(z)-1 jaydfox 4 13,369 08/21/2009, 05:32 PM
Last Post: jaydfox
  regular sexp:different fixpoints Gottfried 6 18,397 08/11/2009, 06:47 PM
Last Post: jaydfox
  Convergence of matrix solution for base e jaydfox 6 14,440 12/18/2007, 12:14 AM
Last Post: jaydfox



Users browsing this thread: 1 Guest(s)