• 0 Vote(s) - 0 Average
• 1
• 2
• 3
• 4
• 5
 Is sexp(z) pseudounivalent for Re(z) > 0 ? tommy1729 Ultimate Fellow Posts: 1,365 Threads: 333 Joined: Feb 2009 03/25/2014, 12:46 AM (This post was last modified: 03/25/2014, 01:01 PM by tommy1729.) Is sexp(z) pseudounivalent for Re(z) > 0 ? Is that a uniqueness condition ? The difference between univalent and pseudounivalent is : speudounivalent is weaker : f(z+k) = f(z) only possible if k is real. regards tommy1729 « Next Oldest | Next Newest »

 Messages In This Thread Is sexp(z) pseudounivalent for Re(z) > 0 ? - by tommy1729 - 03/25/2014, 12:46 AM RE: Is sexp(z) pseudounivalent for Re(z) > 0 ? - by tommy1729 - 03/25/2014, 01:19 PM RE: Is sexp(z) pseudounivalent for Re(z) > 0 ? - by tommy1729 - 03/26/2014, 12:30 AM RE: Is sexp(z) pseudounivalent for Re(z) > 0 ? - by tommy1729 - 03/26/2014, 01:24 PM

 Possibly Related Threads... Thread Author Replies Views Last Post Sexp redefined ? Exp^[a]( - 00 ). + question ( TPID 19 ??) tommy1729 0 1,636 09/06/2016, 04:23 PM Last Post: tommy1729 Can sexp(z) be periodic ?? tommy1729 2 3,919 01/14/2015, 01:19 PM Last Post: tommy1729 pseudo2periodic sexp. tommy1729 0 1,859 06/27/2014, 10:45 PM Last Post: tommy1729 [2014] tommy's theorem sexp ' (z) =/= 0 ? tommy1729 1 2,897 06/17/2014, 01:25 PM Last Post: sheldonison Multiple exp^[1/2](z) by same sexp ? tommy1729 12 14,059 05/06/2014, 10:55 PM Last Post: tommy1729 entire function close to sexp ?? tommy1729 8 9,689 04/30/2014, 03:49 PM Last Post: JmsNxn Vincent's theorem and sin(sexp) ? tommy1729 0 1,767 03/22/2014, 11:46 PM Last Post: tommy1729 sexp for base (1/e)^e ~= 0.0660? sheldonison 10 11,217 11/22/2013, 11:20 PM Last Post: mike3 tetration base conversion, and sexp/slog limit equations sheldonison 44 56,163 02/27/2013, 07:05 PM Last Post: sheldonison sexp by continuum product ? tommy1729 6 8,807 06/30/2011, 10:07 PM Last Post: tommy1729

Users browsing this thread: 1 Guest(s)