Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Is sexp(z) pseudounivalent for Re(z) > 0 ?
#1
Is sexp(z) pseudounivalent for Re(z) > 0 ?

Is that a uniqueness condition ?

The difference between univalent and pseudounivalent is :

speudounivalent is weaker : f(z+k) = f(z) only possible if k is real.

regards

tommy1729
Reply


Messages In This Thread
Is sexp(z) pseudounivalent for Re(z) > 0 ? - by tommy1729 - 03/25/2014, 12:46 AM

Possibly Related Threads...
Thread Author Replies Views Last Post
  Sexp redefined ? Exp^[a]( - 00 ). + question ( TPID 19 ??) tommy1729 0 1,371 09/06/2016, 04:23 PM
Last Post: tommy1729
  Can sexp(z) be periodic ?? tommy1729 2 3,482 01/14/2015, 01:19 PM
Last Post: tommy1729
  pseudo2periodic sexp. tommy1729 0 1,644 06/27/2014, 10:45 PM
Last Post: tommy1729
  [2014] tommy's theorem sexp ' (z) =/= 0 ? tommy1729 1 2,566 06/17/2014, 01:25 PM
Last Post: sheldonison
  Multiple exp^[1/2](z) by same sexp ? tommy1729 12 12,517 05/06/2014, 10:55 PM
Last Post: tommy1729
  entire function close to sexp ?? tommy1729 8 8,573 04/30/2014, 03:49 PM
Last Post: JmsNxn
  Vincent's theorem and sin(sexp) ? tommy1729 0 1,577 03/22/2014, 11:46 PM
Last Post: tommy1729
  sexp for base (1/e)^e ~= 0.0660? sheldonison 10 9,892 11/22/2013, 11:20 PM
Last Post: mike3
  tetration base conversion, and sexp/slog limit equations sheldonison 44 50,377 02/27/2013, 07:05 PM
Last Post: sheldonison
  sexp by continuum product ? tommy1729 6 8,023 06/30/2011, 10:07 PM
Last Post: tommy1729



Users browsing this thread: 1 Guest(s)