Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
complex iteration (complex "height")
#15
bo198214 Wrote:
Gottfried Wrote:with higher precision I recomputed the value and got in the 92..96 partial-sums the following approximations:
Code:
´
  ...
  1.210309025559961+0.5058275713618201*I
---------------------------------------------
  1.210309011      + .5058275611          *I  <--- yours
So this differs from the 7'th digit;
Haha but I just used low precision so here is my 20 digits result:
Code:
1.2103090255599614766+.50582757136182013605*I

update: once for later time, 50 Digits! You see the last some digits are always unreliable.
Code:
1.2103090255599614779588104735397176784037341102467+.50582757136182013700589565226517951794360523253345*I

The last few partial sums computed with internal precision of 400, displayed precision 50, Euler-sum of order 2.538, where order=1 means direct summation without transformation (the last few of partial sums of 128 terms now)
Code:
´
   1.21030902555996147 05286038734660188979105600443644+0.50582757136182012 502296304591137652670054111308587*I
   1.21030902555996147 44685314155510971433670516046106+0.50582757136182012 835671840643903386779427797897960*I
   1.21030902555996147 66583812490070529178600987551324+0.50582757136182013 098572869953873370073216724647955*I
   1.21030902555996147 77865734208122443540107642898914+0.50582757136182013 294937569862301423395913769512951*I
   1.21030902555996147 82987507553564562088347731401270+0.50582757136182013 435542605993548055302116773994320*I
   1.21030902555996147 84733868997136185883982264653880+0.50582757136182013 532695350500506166087181069651300*I
   1.21030902555996147 84778386937626628200500840930051+0.50582757136182013 597695153820676613393345071380896*I
   ------------------------------------------------------------------------------------------------------------------------
   1.21030902555996147 79588104735397176784037341102467+ .50582757136182013 700589565226517951794360523253345*I <--- your value
The non-vanishing increase means, I'd use more precise Euler-order of a bit higher order. I'll see, whether I can find a better transformation.

[update] A better transformation uses a Stirling kind 2 transformation first, which is also regular. Then I don't need high Euler-orders, and get for example the last few partial-sums (128 terms):
Code:
´
  1.210309025559961477958810473539717649 4269005980356+0.5058275713618201370058956522651794 9881594263547436*I
  1.210309025559961477958810473539717660 1745711120037+0.5058275713618201370058956522651795 1511709385013158*I
  1.210309025559961477958810473539717668 9726354895139+0.5058275713618201370058956522651795 2061256599110112*I
  1.210309025559961477958810473539717674 4384709020618+0.5058275713618201370058956522651795 2132025558347280*I
  1.210309025559961477958810473539717677 2354562276144+0.5058275713618201370058956522651795 2045256215306036*I
  1.210309025559961477958810473539717678 3946530537033+0.5058275713618201370058956522651795 1941438348397801*I
  1.210309025559961477958810473539717678 7249247611291+0.5058275713618201370058956522651795 1865625158284700*I
-------------------------------------------------------------
  1.210309025559961477958810473539717678 4037341102467+ .5058275713618201370058956522651795 1794360523253345*I <--- your value
Again, the change of sign of change in differences in partial sums shows, that the summation is still not optimal.
Gottfried Helms, Kassel
Reply


Messages In This Thread
RE: complex iteration (complex "height") - by Gottfried - 03/23/2008, 06:43 AM

Possibly Related Threads...
Thread Author Replies Views Last Post
  Complex or Real numbers more important? Daniel 0 131 12/22/2019, 10:36 AM
Last Post: Daniel
  Complex Tetration, to base exp(1/e) Ember Edison 7 2,205 08/14/2019, 09:15 AM
Last Post: sheldonison
  An explicit series for the tetration of a complex height Vladimir Reshetnikov 13 12,395 01/14/2017, 09:09 PM
Last Post: Vladimir Reshetnikov
  Negative, Fractional, and Complex Hyperoperations KingDevyn 2 6,378 05/30/2014, 08:19 AM
Last Post: MphLee
  new results from complex dynamics bo198214 25 34,641 02/25/2013, 01:42 AM
Last Post: sheldonison
  Complex Tetration Balarka Sen 16 22,321 02/21/2013, 02:23 PM
Last Post: sheldonison
  (MSE) periods in (z*exp(z*exp(...))) for complex z Gottfried 0 2,885 04/16/2012, 10:24 AM
Last Post: Gottfried
  Iteration series: Different fixpoints and iteration series (of an example polynomial) Gottfried 0 2,901 09/04/2011, 05:59 AM
Last Post: Gottfried
  Real and complex behaviour of the base change function (was: The "cheta" function) bo198214 39 52,868 08/13/2011, 06:33 PM
Last Post: bo198214
  Fractional iteration of x^2+1 at infinity and fractional iteration of exp bo198214 10 16,884 06/09/2011, 05:56 AM
Last Post: bo198214



Users browsing this thread: 1 Guest(s)