Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Tommy-Gottfried divisions.
#1
If we divide exp by 1 + x we get another Taylor that starts with 1.

Exp(x)/(1+x) = 1 + a x^2 + ...

We could repeat by dividing by (1 + a x^2).

This results in Gottfried's pxp(x) and " dream of a sequence ".

Notice it gives a product expansion that suggests zero's for exp.
" fake zero's " sort a speak.

Im considering analogues.

Start with exp(x) / (1 + x + x^2/2) maybe ?

I think I recall Some impossibility or critisism about such variants. But I forgot what that was.

Regards

Tommy1729
Reply


Possibly Related Threads...
Thread Author Replies Views Last Post
  @Gottfried : answer to your conjecture on MSE. tommy1729 2 2,281 02/05/2017, 09:38 PM
Last Post: Gottfried
  tommy's simple solution ln^[n](2sinh^[n+x](z)) tommy1729 1 2,211 01/17/2017, 07:21 AM
Last Post: sheldonison
  Tommy's matrix method for superlogarithm. tommy1729 0 1,478 05/07/2016, 12:28 PM
Last Post: tommy1729
  Dangerous limits ... Tommy's limit paradox tommy1729 0 1,730 11/27/2015, 12:36 AM
Last Post: tommy1729
  Tommy's Gamma trick ? tommy1729 7 5,602 11/07/2015, 01:02 PM
Last Post: tommy1729
  Tommy triangles tommy1729 1 1,851 11/04/2015, 01:17 PM
Last Post: tommy1729
  Tommy's hyperlog tommy1729 0 1,573 06/11/2015, 08:23 AM
Last Post: tommy1729
Sad Tommy-Mandelbrot function tommy1729 0 1,780 04/21/2015, 01:02 PM
Last Post: tommy1729
  tommy equation tommy1729 3 3,611 03/18/2015, 08:52 AM
Last Post: sheldonison
  Kouznetsov-Tommy-Cauchy method tommy1729 0 1,875 02/18/2015, 07:05 PM
Last Post: tommy1729



Users browsing this thread: 1 Guest(s)