Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Tommy triangles
#1
In analogue to Pascal triangle ( a + b) , i consider the triangles

1) a^2 + b^2
2) (a^2 + a + b^2 + b)/2

And in particular the analogue central binomial coëfficiënts.

Regards

Tommy1729
Reply
#2
Obviosly everything grows like C 2^2^(n+O(1)) nomatter in what direction you go.
More precise results for specific cases are possible and intresting.
And the number theoretical properties.

Regards

Tommy1729
Reply


Possibly Related Threads...
Thread Author Replies Views Last Post
  Tommy's Gaussian method. tommy1729 18 504 07/28/2021, 12:24 AM
Last Post: JmsNxn
  " tommy quaternion " tommy1729 13 3,139 03/23/2021, 01:21 PM
Last Post: tommy1729
  tommy's simple solution ln^[n](2sinh^[n+x](z)) tommy1729 1 4,627 01/17/2017, 07:21 AM
Last Post: sheldonison
  Tommy's matrix method for superlogarithm. tommy1729 0 3,049 05/07/2016, 12:28 PM
Last Post: tommy1729
  Dangerous limits ... Tommy's limit paradox tommy1729 0 3,199 11/27/2015, 12:36 AM
Last Post: tommy1729
  Tommy's Gamma trick ? tommy1729 7 11,323 11/07/2015, 01:02 PM
Last Post: tommy1729
  Tommy-Gottfried divisions. tommy1729 0 2,830 10/09/2015, 07:39 AM
Last Post: tommy1729
  Tommy's hyperlog tommy1729 0 2,959 06/11/2015, 08:23 AM
Last Post: tommy1729
Sad Tommy-Mandelbrot function tommy1729 0 3,313 04/21/2015, 01:02 PM
Last Post: tommy1729
  tommy equation tommy1729 3 6,858 03/18/2015, 08:52 AM
Last Post: sheldonison



Users browsing this thread: 1 Guest(s)