Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Tommy triangles
#1
In analogue to Pascal triangle ( a + b) , i consider the triangles

1) a^2 + b^2
2) (a^2 + a + b^2 + b)/2

And in particular the analogue central binomial coëfficiënts.

Regards

Tommy1729
Reply
#2
Obviosly everything grows like C 2^2^(n+O(1)) nomatter in what direction you go.
More precise results for specific cases are possible and intresting.
And the number theoretical properties.

Regards

Tommy1729
Reply


Possibly Related Threads...
Thread Author Replies Views Last Post
  tommy beta method tommy1729 0 180 12/09/2021, 11:48 PM
Last Post: tommy1729
  Tommy's Gaussian method. tommy1729 24 5,279 11/11/2021, 12:58 AM
Last Post: JmsNxn
  tommy's singularity theorem and connection to kneser and gaussian method tommy1729 2 667 09/20/2021, 04:29 AM
Last Post: JmsNxn
  " tommy quaternion " tommy1729 14 5,887 09/16/2021, 11:34 PM
Last Post: tommy1729
  tommy's simple solution ln^[n](2sinh^[n+x](z)) tommy1729 1 5,210 01/17/2017, 07:21 AM
Last Post: sheldonison
  Tommy's matrix method for superlogarithm. tommy1729 0 3,461 05/07/2016, 12:28 PM
Last Post: tommy1729
  Dangerous limits ... Tommy's limit paradox tommy1729 0 3,581 11/27/2015, 12:36 AM
Last Post: tommy1729
  Tommy's Gamma trick ? tommy1729 7 12,631 11/07/2015, 01:02 PM
Last Post: tommy1729
  Tommy-Gottfried divisions. tommy1729 0 3,178 10/09/2015, 07:39 AM
Last Post: tommy1729
  Tommy's hyperlog tommy1729 0 3,304 06/11/2015, 08:23 AM
Last Post: tommy1729



Users browsing this thread: 1 Guest(s)