Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Tommy triangles
#1
In analogue to Pascal triangle ( a + b) , i consider the triangles

1) a^2 + b^2
2) (a^2 + a + b^2 + b)/2

And in particular the analogue central binomial coëfficiënts.

Regards

Tommy1729
Reply
#2
Obviosly everything grows like C 2^2^(n+O(1)) nomatter in what direction you go.
More precise results for specific cases are possible and intresting.
And the number theoretical properties.

Regards

Tommy1729
Reply


Possibly Related Threads...
Thread Author Replies Views Last Post
  tommy's simple solution ln^[n](2sinh^[n+x](z)) tommy1729 1 2,679 01/17/2017, 07:21 AM
Last Post: sheldonison
  Tommy's matrix method for superlogarithm. tommy1729 0 1,796 05/07/2016, 12:28 PM
Last Post: tommy1729
  Dangerous limits ... Tommy's limit paradox tommy1729 0 1,998 11/27/2015, 12:36 AM
Last Post: tommy1729
  Tommy's Gamma trick ? tommy1729 7 6,619 11/07/2015, 01:02 PM
Last Post: tommy1729
  Tommy-Gottfried divisions. tommy1729 0 1,740 10/09/2015, 07:39 AM
Last Post: tommy1729
  Tommy's hyperlog tommy1729 0 1,808 06/11/2015, 08:23 AM
Last Post: tommy1729
Sad Tommy-Mandelbrot function tommy1729 0 2,080 04/21/2015, 01:02 PM
Last Post: tommy1729
  tommy equation tommy1729 3 4,161 03/18/2015, 08:52 AM
Last Post: sheldonison
  Kouznetsov-Tommy-Cauchy method tommy1729 0 2,145 02/18/2015, 07:05 PM
Last Post: tommy1729
  [Collatz] Tommy's collatz lemma tommy1729 0 1,902 09/11/2014, 08:48 AM
Last Post: tommy1729



Users browsing this thread: 1 Guest(s)