• 0 Vote(s) - 0 Average
• 1
• 2
• 3
• 4
• 5
 Tommy triangles tommy1729 Ultimate Fellow Posts: 1,493 Threads: 356 Joined: Feb 2009 11/04/2015, 12:40 AM In analogue to Pascal triangle ( a + b) , i consider the triangles 1) a^2 + b^2 2) (a^2 + a + b^2 + b)/2 And in particular the analogue central binomial coëfficiënts. Regards Tommy1729 tommy1729 Ultimate Fellow Posts: 1,493 Threads: 356 Joined: Feb 2009 11/04/2015, 01:17 PM Obviosly everything grows like C 2^2^(n+O(1)) nomatter in what direction you go. More precise results for specific cases are possible and intresting. And the number theoretical properties. Regards Tommy1729 « Next Oldest | Next Newest »

 Possibly Related Threads... Thread Author Replies Views Last Post tommy beta method tommy1729 0 156 12/09/2021, 11:48 PM Last Post: tommy1729 Tommy's Gaussian method. tommy1729 24 5,092 11/11/2021, 12:58 AM Last Post: JmsNxn tommy's singularity theorem and connection to kneser and gaussian method tommy1729 2 635 09/20/2021, 04:29 AM Last Post: JmsNxn " tommy quaternion " tommy1729 14 5,786 09/16/2021, 11:34 PM Last Post: tommy1729 tommy's simple solution ln^[n](2sinh^[n+x](z)) tommy1729 1 5,185 01/17/2017, 07:21 AM Last Post: sheldonison Tommy's matrix method for superlogarithm. tommy1729 0 3,442 05/07/2016, 12:28 PM Last Post: tommy1729 Dangerous limits ... Tommy's limit paradox tommy1729 0 3,554 11/27/2015, 12:36 AM Last Post: tommy1729 Tommy's Gamma trick ? tommy1729 7 12,569 11/07/2015, 01:02 PM Last Post: tommy1729 Tommy-Gottfried divisions. tommy1729 0 3,163 10/09/2015, 07:39 AM Last Post: tommy1729 Tommy's hyperlog tommy1729 0 3,288 06/11/2015, 08:23 AM Last Post: tommy1729

Users browsing this thread: 1 Guest(s)