Thread Rating:
  • 1 Vote(s) - 5 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Finding continu iteration cycles.
#1
Finding continue iteration cycles.

=> equivalent to solving

A(z)
F(z+1) = A(F(z))
G(s,z) = F(F^-1(z) + s)
Z=(a,b) = a + b i
Jordan curve C(a,b) given by D(a,b) = 0.
H(z) = G ' (0,z) ds - 1.

Arg H(z) = Tan C ' (a,b)
And H(z) =\= 0 on C(a,b).

Regards

Tommy1729
Reply
#2
I edited the OP.

Regards

Tommy1729
Reply
#3
Strongly related

http://math.eretrandre.org/tetrationforu...p?tid=1068

Regards

Tommy1729
Reply


Possibly Related Threads…
Thread Author Replies Views Last Post
  Fractional iteration of x^2+1 at infinity and fractional iteration of exp bo198214 17 28,495 06/11/2022, 12:24 PM
Last Post: tommy1729
  Inverse Iteration Xorter 3 7,374 02/05/2019, 09:58 AM
Last Post: MrFrety
  Half-iteration of x^(n^2) + 1 tommy1729 3 8,627 03/09/2017, 10:02 PM
Last Post: Xorter
  Iteration basics Ivars 27 47,015 01/02/2017, 05:21 PM
Last Post: Xorter
  Superfunctions in continu sum equations tommy1729 0 3,948 01/03/2013, 12:02 AM
Last Post: tommy1729
  Iteration series: Different fixpoints and iteration series (of an example polynomial) Gottfried 0 4,852 09/04/2011, 05:59 AM
Last Post: Gottfried
  Iteration exercises: f(x)=1/(1+x) Gottfried 4 10,697 08/01/2010, 04:52 PM
Last Post: tommy1729
  Iteration series Gottfried 3 8,530 08/10/2009, 04:16 PM
Last Post: Gottfried
  Iteration by Ramanujan Gottfried 8 15,797 05/28/2008, 06:52 AM
Last Post: bo198214
  Parabolic Iteration, again andydude 11 23,824 05/14/2008, 02:56 AM
Last Post: andydude



Users browsing this thread: 1 Guest(s)