Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
the inconsistency depending on fixpoint-selection
#7
With some more analytical matrix-operations and numerical checks I now tend to the conclusion, that Asimov's proposal may be proven to be false.

I checked the occuring matrices in more depth and found very convincing numerical results, that -at least for the case b=sqrt(2), t0=2 and t1=4- the results are equal. For integer heights this is obvious from the scalar expression only (sqrt(2)^2 = 2, sqrt(2)^4=4 and so on), the problem occurs with fractional heights. I checked this now for h=1/2, using the powerseries, which I get using eingensystem-decomposition/diagonalization.

I used a better routine to compute the eigen-matrices up to dimension 160x160 and some transformations get those different eigenmatrices summable to the same values. Although this is only in certain numerical approximation the involved transformations are simple binomial-transformations, which then may be analytically derived as well. So my challenge is now to put some effort to perform those analytical derivations since the possibility of success is backed better.



Let b=sqrt(2), t0 = 2, t1 = 4, h the height using h=1/2

Then, in my usual notation we should get

V(x)~ * Bb^0.5 =V(y)~

where y = T_b°0.5(x)

With the fixpoints, using the h()-function with indexes
t0 = h_0(b)=2 t1 = h_1(b)=4

this is equivalent to the two different fixpoint-based matrix expressions (using PInv for P^-1)
Code:
´
V(x)~ * Bb^0.5 = V(x)~ * dV(1/t0)*PInv ~ * U_t0^0.5 * P~ * dV(t0)
V(x)~ * Bb^0.5 = V(x)~ * dV(1/t1)*PInv ~ * U_t1^0.5 * P~ * dV(t1)
so we request:

Code:
´
  dV(1/t0)*PInv ~ * U_t0^0.5 * P~ * dV(t0)
= dV(1/t1)*PInv ~ * U_t1^0.5 * P~ * dV(t1)


Rearrange dV(1/t0):
Code:
´
  PInv~ * U_t0^0.5 * P~
= dV(t0/t1)*PInv ~ * U_t1^0.5 * P~ * dV(t1/t0)

Now set t1/t0=a and the part dV(1/a)*PInv ~ in the rhs can be expanded according to
Code:
´
dV(1/a)*P^-1 ~ = (dV(1/a) P^-1~ dV(a))*dV(1/a)
            = (dV(a) P^-1 dV(1/a)) ~ * dV(1/a)
            = P^-a ~ * dV(1/a)

and we get, with a= 2, also writing U2 for U_t0 and U4 for U_t1
Code:
´
  P^-1 ~ * U2^0.5 * P~
= P^-2 ~ * dV(1/2) * U4^0.5 * dV(2)* P^2 ~


and this gives then, arranging P^-2 and P^2 to the left:
Code:
´
     P ~   * U2^0.5 * PInv ~
= dV(1/2)  * U4^0.5 * dV(2)


We see, that -unfortunately- we still have infinite sums in the lhs, namely all rows of P~ are infinite as well as the columns of U2^0.5. So we have either to determine these sums analytically (for what I've no solution currently) or employ accelerating methods, like Euler-transform/summation. It occurs, that these row/column-products are not well Euler-accelerable; the Euler-sum does not converge well. The second multiplication, U2^0.5 * PInv~, however provides a simple result: since only the second column of the result is interesting, only the top left 2x2-segment of PInv~ is of relevance, and this simply subtracts the first [1,0,0,0,...] column of U2^0.5 from its second column - which is happily trivial.



Applying Euler-summation anyway we get for the first few items of the lhs and rhs identity within a certain range of accuracy, see end of msg.
Some more tests gave even better accuracy with an additional powerseries in x, which makes -for abs(x)<1- the resulting powerseries convergent using the first 160 terms:
Code:
´
V(x)~*    P ~   * U2^0.5 * PInv ~
=V(x)~* dV(1/2)  * U4^0.5 * dV(2)


where the lhs can be rewritten using the binomial-theorem and makes
Code:
´
       V(x+1)~   * U2^0.5 * PInv ~
=V(x)~* dV(1/2)  * U4^0.5 * dV(2)

where the implicte infinite series in the matrix-product P~*U2^0.5 are now removed.
Tests with various x, which make the matrix-multiplication convergent, should then give the same results for the lhs and rhs. However, using various different x does not prove the identity, but makes it more likely.
(see last example, where x was set x=-1/2)



The matrix U2^0.5 was constructed from the analytic eigen-decomposition (160x160):
Let u0=log(t0)=log(2), u1 = log(t1)=log(4)
Code:
´  
  U2     = dV(u0) * S2                    // S2 is the factorially similarity-scaled matrix if Stirling-numbers 2'nd kind
         = W2 * D2 * W2^-1
  U2^0.5 = W2 * D2^0.5 * W2^-1


where W2 is the matrix of eigenvectors and D2 the matrix of eigenvalues of the matrix U2=dV(u0)*S2. Since the matrix U2 is triangular, their eigenvalues can be taken from the diagonal (and are thus identical to the entries in dV(u0)) and their eigenvector-matrices are assumed to be triangular, too. Using my analytical description for the eigenmatrices we get exact terms for any dimension. The same method was applied to U4 (based on the second fixpoint):
Code:
´  
  U4     = dV(u1) * S2
         = W4 * D4 * W4^-1
  U4^0.5 = W4 * D4^0.5 * W4^-1

=======================================================================

Documents:
-------------------------------------------------------------
Always: rows 0..10 , 149..159, columns 0..3; col 1 is of interest in U2^0.5 and U4^0.5
Code:
´
W2:
  1.0000000          .          .          .
          0  1.0000000          .          .
          0  1.1294457  1.0000000          .
          0  1.1985847  2.2588914  1.0000000
          0  1.2474591  3.6728170  3.3883370
          0  1.2856301  5.2023909  7.4226968
          0  1.3170719  6.8257401  13.305570
          0  1.3439053  8.5286133  21.207245
          0  1.3673703  10.300960  31.276282
          0  1.3882575  12.135263  43.645475
          0  1.4071054  14.025656  58.435556
...
          0  1.9669663  450.73244  48243.326
          0  1.9685780  454.52192  49020.007
          0  1.9701804  458.31761  49803.860
          0  1.9717734  462.11948  50594.901
          0  1.9733573  465.92749  51393.148
          0  1.9749320  469.74163  52198.619
          0  1.9764978  473.56185  53011.331
          0  1.9780547  477.38813  53831.301
          0  1.9796029  481.22044  54658.547
          0  1.9811424  485.05875  55493.086
          0  1.9826733  488.90302  56334.934
...

W2^-1:
  1.0000000              .              .              .
          0      1.0000000              .              .
          0     -1.1294457      1.0000000              .
          0      1.3527103     -2.2588914      1.0000000
          0     -1.6826504      3.9810682     -3.3883370
          0      2.1512781     -6.4209265      7.8850737
          0     -2.8091004      9.9333059     -15.655603
          0      3.7304380     -15.029982      28.522828
          0     -5.0228111      22.457753     -49.302115
          0      6.8411612     -33.311773      82.314637
          0     -9.4087785      49.202176     -134.16796
...
          0   1.2260250E25  -1.6721839E26   1.5866458E27
          0  -1.8513579E25   2.5287005E26  -2.4033047E27
          0   2.7957655E25  -3.8240626E26   3.6403727E27
          0  -4.2221159E25   5.7831789E26  -5.5143067E27
          0   6.3764412E25  -8.7462552E26   8.3530285E27
          0  -9.6304175E25   1.3227914E27  -1.2653332E28
          0   1.4545551E26  -2.0006638E27   1.9167862E28
          0  -2.1970166E26   3.0260093E27  -2.9036895E28
          0   3.3185955E26  -4.5769860E27   4.3988012E28
          0  -5.0129450E26   6.9231218E27  -6.6638632E28
          0   7.5726685E26  -1.0472183E28   1.0095442E29
...

U2^0.5:
  1.0000000                  .                 .                 .
          0         0.83255461                 .                 .
          0         0.15745312        0.69314718                 .
          0        0.010090238        0.26217664        0.57708288
          0     -0.00017858491       0.041592834        0.32741456
          0     0.000087842056      0.0028801157       0.082902856
          0   -0.0000021818250     0.00019184203       0.011468414
          0   -0.0000070205122    0.000020425106      0.0010469505
          0    0.0000016647900   -0.000010572403    0.000090362152
          0   0.00000060587940  0.00000048584930  -0.0000059493912
          0  -0.00000023525463   0.0000013999264  -0.0000016127504
...
          0      2.3828881E-14     5.4299315E-14     8.9934143E-14
          0      2.0689227E-14     4.8670874E-14     8.2750369E-14
          0      1.7351973E-14     4.2487147E-14     7.4493739E-14
          0      1.3883561E-14     3.5884110E-14     6.5367962E-14
          0      1.0347935E-14     2.8995152E-14     5.5577029E-14
          0      6.8056776E-15     2.1949028E-14     4.5321681E-14
          0      3.3132833E-15     1.4868077E-14     3.4796250E-14
          0     -7.7428773E-17     7.8667258E-15     2.4185926E-14
          0     -3.3197744E-15     1.0502594E-15     1.3664433E-14
          0     -6.3725353E-15    -5.4861413E-15     3.3921124E-15
          0     -9.2001722E-15    -1.1658107E-14    -6.4855900E-15
Comment: the order of 1E-14 is reached already in the ~ 30'th row and seems to decrease extremely slowly from then.


------------------------------------------------------------
W4:
  1.0000000              .              .              .
          0      1.0000000              .              .
          0     -1.7943497      1.0000000              .
          0      3.3934259     -3.5886994      1.0000000
          0     -6.5397995      10.006543     -5.3830492
          0      12.722863     -25.257585      19.839351
          0     -24.890972      60.430440     -61.930607
          0      48.877930     -139.82513      175.90008
          0     -96.234662      316.19924     -469.95850
          0      189.84909     -703.21881      1202.8562
          0     -375.10397      1544.2179     -2982.3442
...
          0   1.9370531E44  -9.7178394E45   2.5558655E47
          0  -3.8712771E44   1.9538433E46  -5.1699354E47
          0   7.7369377E44  -3.9282074E46   1.0456809E48
          0  -1.5462725E45   7.8973968E46  -2.1148554E48
          0   3.0903312E45  -1.5876640E47   4.2769087E48
          0  -6.1762668E45   3.1916737E47  -8.6486345E48
          0   1.2343806E46  -6.4159924E47   1.7487744E49
          0  -2.4670281E46   1.2897183E48  -3.5358114E49
          0   4.9306147E46  -2.5924578E48   7.1484829E49
          0  -9.8543949E46   5.2109217E48  -1.4451354E50
          0   1.9695217E47  -1.0473784E49   2.9212818E50
...

W4^-1:
  1.0000000             .             .             .
          0     1.0000000             .             .
          0     1.7943497     1.0000000             .
          0     3.0459559     3.5886994     1.0000000
          0     4.9810929     9.3116028     5.3830492
          0     7.9195802     20.893206     18.796941
          0     12.310657     42.992653     53.513592
          0     18.780115     83.386686     134.64033
          0     28.192642     154.79615     311.28394
          0     41.734039     277.67324     676.14910
          0     61.019154     484.41060     1399.2604
...
          0  3.2233680E13  7.0896715E18  4.1258282E22
          0  3.6756663E13  8.5329610E18  5.1552857E22
          0  4.1895929E13  1.0264451E19  6.4375659E22
          0  4.7732997E13  1.2340592E19  8.0337875E22
          0  5.4359849E13  1.4828683E19  1.0019614E23
          0  6.1880239E13  1.7808913E19  1.2488663E23
          0  7.0411146E13  2.1376785E19  1.5556698E23
          0  8.0084418E13  2.5645989E19  1.9366789E23
          0  9.1048598E13  3.0751791E19  2.4095655E23
          0  1.0347098E14  3.6855062E19  2.9961454E23
          0  1.1753991E14  4.4147026E19  3.7233358E23
...

U4^0.5
  1.0000000                .                 .               .
          0        1.1774100                 .               .
          0       0.37481156         1.3862944               .
          0      0.040296534        0.88261376       1.6322369
          0    0.00092111549        0.23537479       1.5587974
          0    0.00044447921       0.032376274      0.66380933
          0   -0.00023342988      0.0033609687      0.16318455
          0    0.00010396861    -0.00014225795     0.027006196
          0  -0.000025291882     0.00010651332    0.0026823939
          0  -0.000014529123  0.00000038544170   0.00028006948
          0   0.000027464012   -0.000045026171  0.000053888787
...
          0     1.1073259E11     -1.3152838E11    1.1289422E11
          0    -1.6910057E11      2.1323008E11   -1.9169761E11
          0     2.3128241E11     -3.2059300E11    3.0724298E11
          0    -2.5297584E11      4.2671391E11   -4.5420508E11
          0     1.0978170E11     -4.3584528E11    5.8615974E11
          0     5.0346351E11      8.7346252E10   -5.4905202E11
          0    -2.2791585E12      1.2476824E12   -6.5225955E10
          0     6.7065899E12     -4.9809105E12    2.2265937E12
          0    -1.6860759E13      1.4124712E13   -8.0902843E12
          0     3.8878344E13     -3.4859132E13    2.2220558E13
          0    -8.4639528E13      7.9448940E13   -5.3923149E13
...
------------------------------------------------------------------------

dV(1/2)*U4^0.5*dV(2)
  1.0000000                   .                   .                 .
          0           1.1774100                   .                 .
          0          0.18740578           1.3862944                 .
          0         0.010074133          0.44130688         1.6322369
          0       0.00011513944         0.058843697        0.77939872
          0      0.000027779951        0.0040470343        0.16595233
          0    -0.0000072946837       0.00021006054       0.020398069
          0     0.0000016245095    -0.0000044455608      0.0016878873
          0   -0.00000019759283     0.0000016642707    0.000083824810
          0  -0.000000056754387  0.0000000030112633   0.0000043760856
          0   0.000000053640648   -0.00000017588348  0.00000042100615
...
          0      -6.6807008E-16       1.4964761E-15    -2.4746068E-15
          0       5.6873578E-16      -1.3041345E-15     2.1989300E-15
          0      -4.6685677E-16       1.1041230E-15    -1.9077276E-15
          0       3.6391421E-16      -8.9954404E-16     1.6058326E-15
          0      -2.6129500E-16       6.9333235E-16    -1.2978634E-15
          0       1.6028132E-16      -4.8822996E-16     9.8817980E-16
          0      -6.2042494E-17       2.8676590E-16    -6.8084596E-16
          0      -3.2370731E-17      -9.1240918E-17     3.7960165E-16
          0       1.2202987E-16      -9.6283351E-17    -8.7840394E-17
          0      -2.0613040E-16       2.7399096E-16    -1.9140555E-16
          0       2.8399169E-16      -4.4031439E-16     4.5547407E-16
...
------------------------------------------------------------------------

Comparision of first 8 terms, produced by the different fixpoints-matrices.

With Euler-summation of different orders for the non-converging vector-products in P~ * (U2^0.5*P^-1 ~) I get for the first eight terms

Code:
´  
  Euler-sum            |       Compare
P~ * U2^0.5 * P^-1 ~   |   dV(1/2)*U4^0.5 *dV(2)
-----------------------+--------------------------
      3.1082947E-14    |      .
      1.1774100        |     1.1774100
      0.18740578       |     0.18740578
      0.010074195      |     0.010074133
      0.00011681686    |     0.00011513944
      0.000027854237   |     0.000027779951
     -0.0000073207548  |    -0.0000072946837
      0.0000016098065  |     0.0000016245095
     -0.00000016722781 |    -0.00000019759283

Here are partial sums if the matrices are used as coefficients for a powerseries in x
Here is x=-1/2 for the two versions from U2 and U4. The approximations are very good and both results seem to be equal
(only the 2'nd columns are relevant, but also the other columns provide equal results).
The partial sums are sequentially rowwise, according to the increasing number of involved terms.
Code:
´
partial sums of
   dV(-1/2) * (P~ * U2^0.5*PInv~ )                 | dV(-1/2) *  (dV(1/2)*U4^0.5*dV(2)
= dV(-1/2+1)     * U2^0.5*PInv~                   |

  1.0000000   -1.0000000   1.0000000   -1.0000000  | 1.0000000            .           .            .
  1.0000000  -0.58372269  0.16744539   0.24883192  | 1.0000000  -0.58870501           .            .
  1.0000000  -0.54435941  0.26200562  -0.15293863  | 1.0000000  -0.54185357  0.34657359            .
  1.0000000  -0.54309813  0.29225514  -0.17533567  | 1.0000000  -0.54311283  0.29141023  -0.20402961
  1.0000000  -0.54310930  0.29487702  -0.16270440  | 1.0000000  -0.54310564  0.29508796  -0.15531719
  1.0000000  -0.54310655  0.29496153  -0.16037546  | 1.0000000  -0.54310651  0.29496149  -0.16050320
  1.0000000  -0.54310659  0.29496460  -0.16020536  | 1.0000000  -0.54310662  0.29496477  -0.16018448
  1.0000000  -0.54310664  0.29496487  -0.16019783  | 1.0000000  -0.54310663  0.29496481  -0.16019767
  1.0000000  -0.54310663  0.29496481  -0.16019733  | 1.0000000  -0.54310663  0.29496481  -0.16019734
  1.0000000  -0.54310663  0.29496481  -0.16019734  | 1.0000000  -0.54310663  0.29496481  -0.16019735
  1.0000000  -0.54310663  0.29496481  -0.16019735  | 1.0000000  -0.54310663  0.29496481  -0.16019735
  1.0000000  -0.54310663  0.29496481  -0.16019735  | 1.0000000  -0.54310663  0.29496481  -0.16019735
  1.0000000  -0.54310663  0.29496481  -0.16019735  | 1.0000000  -0.54310663  0.29496481  -0.16019735
...
=======================================================================

Conclusion:

Although essential approximations are poor I'm now much confident, that either with a better tool for convergence-acceleration or with an analytical approach based on the formal description of terms using my solution for the eigen-system, a chance to get a result becomes more realistic and should now be worth a more serious effort.

Gottfried
Gottfried Helms, Kassel
Reply


Messages In This Thread
RE: the inconsistency depending on fixpoint-selection - by Gottfried - 03/03/2008, 11:20 AM

Possibly Related Threads...
Thread Author Replies Views Last Post
  Iteration exercises: f(x)=x^2 - 0.5 ; Fixpoint-irritation... Gottfried 23 28,085 10/20/2017, 08:32 PM
Last Post: Gottfried
  (Again) fixpoint outside Period tommy1729 2 2,156 02/05/2017, 09:42 AM
Last Post: tommy1729
  Polygon cyclic fixpoint conjecture tommy1729 1 2,008 05/18/2016, 12:26 PM
Last Post: tommy1729
  The " outside " fixpoint ? tommy1729 0 1,382 03/18/2016, 01:16 PM
Last Post: tommy1729
  2 fixpoint pairs [2015] tommy1729 0 1,652 02/18/2015, 11:29 PM
Last Post: tommy1729
  [2014] The secondary fixpoint issue. tommy1729 2 3,366 06/15/2014, 08:17 PM
Last Post: tommy1729
  Simple method for half iterate NOT based on a fixpoint. tommy1729 2 3,126 04/30/2013, 09:33 PM
Last Post: tommy1729
  2 fixpoint failure tommy1729 1 2,710 11/13/2010, 12:25 AM
Last Post: tommy1729
  abs f ' (fixpoint) = 0 tommy1729 2 4,407 09/09/2010, 10:13 PM
Last Post: tommy1729
  [Regular tetration] [Iteration series] norming fixpoint-dependencies Gottfried 11 12,740 08/31/2010, 11:55 PM
Last Post: tommy1729



Users browsing this thread: 1 Guest(s)