• 0 Vote(s) - 0 Average
• 1
• 2
• 3
• 4
• 5
 Change of base formula for Tetration jaydfox Long Time Fellow Posts: 440 Threads: 31 Joined: Aug 2007 08/16/2007, 05:51 PM (This post was last modified: 08/16/2007, 06:00 PM by jaydfox.) Hey, it's a change of base formula for **tetration**. Some people only define tetration for integers $n \ge 1$, others for integers $n \ge 0$, others for integers $n \ge -1$. Some people define it for real numbers $x \ge 0$, or $x \ge -1$ or $x > -2$. Some people might define tetration over all reals, or over the complex numbers. I prefer reals greater than -2 myself, but your mileage may vary. For real numbers, my formula is valid, assuming you define tetration as iterated exponentials, with negative iterations equivalent to logarithms. I don't claim validity over complex numbers, mainly because the formula's very basis for convergence is the increasing modulus of the successive tetrations, and complex tetrations can cause the modulus to decrease, which invalidates the limit. For real x, use whatever domain you use for tetration. If *you* define tetration as valid for x>-2, what did you expect to happen when you put in x <= -2? The problem isn't with my formula, it's with your indecision on what the valid domain for x is. Use whatever domain you consider valid. Moving along: There are two main base conversion formulae for exponentiation for base a, given an exact solution for base b: $ \begin{eqnarray} a^x & = & b^{\log_b(a^x)} \\ \vspace{5} \\ a^x & = & b^{\log_b(a)\times x} \\ \end{eqnarray}$ The first is a trivial restatement of the definition of log_b(z) as the inverse function of b^z. The second displays some "fundamental truth" about exponentiation that isn't obvious from looking solely at the first formula. It allows you to solve for arbitrary exponentiations of base a, having no knowledge of how to do so explicitly, but having knowledge of how to exponentiate base b, along with knowledge of the constant log_b(a). There are two main change of base formulae for tetration: $ \begin{eqnarray} {}^x a & = & {}^{\text{slog}_b({}^x a)} b \\ \vspace{5} \\ {\Large ^{\normalsize x} a} & = & {\Large \lim_{n \to \infty}\log_a^{\circ n}\left({}^{\left(\normalsize n+x+\mu_b(a)\right)} b\right)} \end{eqnarray}$ In either case, if it makes you feel better, you can explicitly state that x is a real > -2, or x is an integer >= -1, or whatever. And I've already stated that a and b should be greater than eta, though as a tool for fractionally iterating logarithms, it has applications with bases between 1 and eta. The first formula, again, is a trivial restatement of the definition of slog_b(x) as the inverse of b^^x. The second displays some fundamental truth about the relationship of tetration in various bases, which isn't at all obvious by looking solely at the first formula, and it also allows us solve tetration for base a when we have no knowledge of how to do so explicitly, so long as we know how to do so with base b, and we know the value of the constant mu_b(a). ~ Jay Daniel Fox « Next Oldest | Next Newest »

 Messages In This Thread Change of base formula for Tetration - by jaydfox - 08/12/2007, 06:39 AM RE: Change of base formula for Tetration - by jaydfox - 08/12/2007, 06:41 AM RE: Change of base formula for Tetration - by jaydfox - 08/12/2007, 08:38 AM RE: Change of base formula for Tetration - by jaydfox - 08/12/2007, 08:53 AM RE: Change of base formula for Tetration - by jaydfox - 08/12/2007, 04:34 PM RE: Change of base formula for Tetration - by bo198214 - 08/12/2007, 06:39 PM RE: Change of base formula for Tetration - by jaydfox - 08/12/2007, 09:00 PM RE: Change of base formula for Tetration - by jaydfox - 08/12/2007, 09:09 PM RE: Change of base formula for Tetration - by jaydfox - 08/12/2007, 09:30 PM RE: Change of base formula for Tetration - by andydude - 08/13/2007, 02:47 PM RE: Change of base formula for Tetration - by andydude - 08/13/2007, 02:58 PM RE: Change of base formula for Tetration - by jaydfox - 08/13/2007, 06:34 PM RE: Change of base formula for Tetration - by bo198214 - 08/13/2007, 07:31 PM RE: Change of base formula for Tetration - by bo198214 - 08/13/2007, 07:37 PM RE: Change of base formula for Tetration - by jaydfox - 08/13/2007, 08:03 PM RE: Change of base formula for Tetration - by bo198214 - 08/13/2007, 08:23 PM RE: Change of base formula for Tetration - by jaydfox - 08/13/2007, 08:32 PM RE: Change of base formula for Tetration - by bo198214 - 08/15/2007, 09:36 AM RE: Change of base formula for Tetration - by jaydfox - 08/15/2007, 10:15 AM RE: Change of base formula for Tetration - by jaydfox - 08/13/2007, 03:42 PM RE: Change of base formula for Tetration - by jaydfox - 08/15/2007, 11:29 PM RE: Change of base formula for Tetration - by jaydfox - 08/16/2007, 09:21 PM RE: Change of base formula for Tetration - by bo198214 - 08/16/2007, 09:32 PM RE: Change of base formula for Tetration - by jaydfox - 08/16/2007, 09:49 PM RE: Change of base formula for Tetration - by bo198214 - 08/16/2007, 09:53 PM RE: Change of base formula for Tetration - by jaydfox - 08/31/2007, 03:51 AM RE: Change of base formula for Tetration - by jaydfox - 08/31/2007, 06:24 AM RE: Change of base formula for Tetration - by bo198214 - 08/31/2007, 09:03 AM RE: Change of base formula for Tetration - by tommy1729 - 05/03/2009, 10:20 PM RE: Change of base formula for Tetration - by sheldonison - 05/05/2009, 11:21 AM RE: Change of base formula for Tetration - by tommy1729 - 05/05/2009, 12:19 PM RE: Change of base formula for Tetration - by sheldonison - 05/05/2009, 01:29 PM RE: Change of base formula for Tetration - by bo198214 - 05/05/2009, 01:37 PM RE: Change of base formula for Tetration - by jaydfox - 08/31/2007, 04:11 AM Convergence of Jay's change of base formula - by bo198214 - 08/15/2007, 09:00 PM RE: Parabolic Iteration - by jaydfox - 08/15/2007, 09:19 PM RE: Parabolic Iteration - by bo198214 - 08/15/2007, 09:30 PM RE: Parabolic Iteration - by jaydfox - 08/15/2007, 11:41 PM RE: Parabolic Iteration - by bo198214 - 08/16/2007, 08:17 AM RE: Parabolic Iteration - by jaydfox - 08/16/2007, 05:51 PM RE: Parabolic Iteration - by bo198214 - 08/16/2007, 06:40 PM RE: Parabolic Iteration - by jaydfox - 08/16/2007, 09:47 PM RE: Parabolic Iteration - by bo198214 - 08/16/2007, 10:07 PM

 Possibly Related Threads... Thread Author Replies Views Last Post Complex Tetration, to base exp(1/e) Ember Edison 7 4,150 08/14/2019, 09:15 AM Last Post: sheldonison Recursive formula generating bounded hyper-operators JmsNxn 0 1,948 01/17/2017, 05:10 AM Last Post: JmsNxn Is bounded tetration is analytic in the base argument? JmsNxn 0 1,797 01/02/2017, 06:38 AM Last Post: JmsNxn Extrapolated Faá Di Bruno's Formula Xorter 1 2,728 11/19/2016, 02:37 PM Last Post: Xorter [2015] 4th Zeration from base change pentation tommy1729 5 7,313 03/29/2015, 05:47 PM Last Post: tommy1729 Conjecture on semi-exp base change [2015] tommy1729 0 2,120 03/24/2015, 03:14 PM Last Post: tommy1729 tetration base sqrt(e) tommy1729 2 4,085 02/14/2015, 12:36 AM Last Post: tommy1729 Explicit formula for the tetration to base $$e^{1/e}$$? mike3 1 3,623 02/13/2015, 02:26 PM Last Post: Gottfried tetration base > exp(2/5) tommy1729 2 3,873 02/11/2015, 12:29 AM Last Post: tommy1729 about power towers and base change tommy1729 7 10,092 05/04/2014, 08:30 AM Last Post: tommy1729

Users browsing this thread: 1 Guest(s)