• 0 Vote(s) - 0 Average
• 1
• 2
• 3
• 4
• 5
 Change of base formula for Tetration jaydfox Long Time Fellow Posts: 440 Threads: 31 Joined: Aug 2007 08/12/2007, 06:41 AM Now to back up my claim with some dense math. The conversions are all basic, so high school level calculus should be sufficient to follow (if you take your time), except for the new notation for tetration, which we should all be familiar with if we're visiting this forum. To see that the constant $\mu_b(a)$ exists, and furthermore that its value converges superexpontially, i.e., $\frac{1}{O\left({}^n e\right)}$, consider the following. Note that this is simply extending my previous calculations to generic bases a and b. First, from the definition of the conversion formula I gave above, for a fixed large n, we get: $\begin{eqnarray} {\Large ^{\normalsize x} a} & = & {\Large log_a^{\circ n}\left({}^{\left(\normalsize n+x+\mu_b(a)\right)} b\right)} \end{eqnarray}$ Now, let's see what happens if we increase n by 1. $\begin{eqnarray} {\Large ^{\normalsize x} a} & = & {\Large log_a^{\circ \normalsize (n+1)}\left({}^{\left(\normalsize (n+1)+x+\mu_b(a)\right)} b\right)} \\ & = & {\Large log_a^{\circ \normalsize (n+1)}\left(b^{\left({}^{\left(\normalsize n+x+\mu_b(a)\right)} b\right)}\right)} \\ & = & {\Large log_a^{\circ n}\left(log_a \left(a^{\left( log_a(b) \times \left({}^{\left(\normalsize n+x+\mu_b(a)\right)}\right) b\right)}\right)\right)} \\ & = & {\Large log_a^{\circ n}\left({log_a(b) + \left({}^{\left(\normalsize n+x+\mu_b(a)\right)} b\right)}\right)} \\ & = & {\Large log_a^{\circ n}\left(\left({}^{\left(\normalsize n+x+\mu_b(a)\right)} b\right)\ \times\ \left(1\ +\ \frac{log_a(b)}{{}^{\left(\normalsize n+x+\mu_b(a)\right)} b}\right)\right)} \\ & = & {\Large log_a^{\circ n} \left({}^{\left(\normalsize n+x+\mu_b(a)\right)} b\right)\ +\ \epsilon_{\small 1}},\text{ given }\epsilon_{\small 1}\ \approx\ \frac{log_a(b)}{{}^{\left(\normalsize n+x+\mu_b(a)\right)} b} \to 0 \end{eqnarray}$ However, if you're not convinced as I am, consider taking it to n+2: $\begin{eqnarray} {\Large ^{\normalsize x} a} & = & {\Large log_a^{\circ \normalsize (n+2)}\left({}^{\left(\normalsize (n+2)+x+\mu_b(a)\right)} b\right)} \\ & = & {\Large log_a^{\circ \normalsize (n+2)}\left(b^{\left(b^{\left({}^{\left(\normalsize n+x+\mu_b(a)\right)} b\right)}\right)}\right)} \\ & = & {\Large log_a^{\circ \normalsize (n+2)}\left(a^{log_a(b)\times \left(a^{log_a(b) \times \left({}^{\left(\normalsize n+x+\mu_b(a)\right)} b\right)}\right)}\right)} \\ & = & {\Large log_a^{\circ \normalsize (n+1)}\left(log_a(b)\ +\ a^{\left(log_a(b) \times a^{\left({}^{\left(\normalsize n+x+\mu_b(a)\right)} b\right)}\right)}\right)} \\ & = & {\Large log_a^{\circ \normalsize (n+1)}\left(\left(a^{\left(log_a(b) \times a^{\left({}^{\left(\normalsize n+x+\mu_b(a)\right)} b\right)}\right)}\right)\ \times\ (1+\epsilon_2)\right)} \\ & = & {\Large log_a^{\circ n}\left(\left(log_a(b)\ +\ a^{\left({}^{\left(\normalsize n+x+\mu_b(a)\right)} b\right)}\right)\ +\ log_a(1+\epsilon_2)\right)} \\ & = & {\Large log_a^{\circ n}\left(\left(\left({}^{\left(\normalsize n+x+\mu_b(a)\right)} b\right)\ \times (1+\epsilon_1)\right)\ +\ \epsilon_{2'}\right)} \\ & = & {\Large log_a^{\circ n} \left({}^{\left(\normalsize n+x+\mu_b(a)\right)} b\right)\ +\ \epsilon_{\small 1'}},\text{ where }\epsilon_{\small 1'} \approx \epsilon_1 (1+log_b(a)\epsilon_{2'}) \end{eqnarray}$ Notice that $\epsilon_{2'} \ll \epsilon_1$, thus supporting the claim that this superlogarithmic constant converges superexponentially. For base e, once you've found it within a factor of 1 part in 1000, the next iteration will get you accuracy of 1 part in e^1000. The next will get you within e^(e^1000). Of course, machine precision will necessarily cut your ascent off pretty early. « Next Oldest | Next Newest »

 Messages In This Thread Change of base formula for Tetration - by jaydfox - 08/12/2007, 06:39 AM RE: Change of base formula for Tetration - by jaydfox - 08/12/2007, 06:41 AM RE: Change of base formula for Tetration - by jaydfox - 08/12/2007, 08:38 AM RE: Change of base formula for Tetration - by jaydfox - 08/12/2007, 08:53 AM RE: Change of base formula for Tetration - by jaydfox - 08/12/2007, 04:34 PM RE: Change of base formula for Tetration - by bo198214 - 08/12/2007, 06:39 PM RE: Change of base formula for Tetration - by jaydfox - 08/12/2007, 09:00 PM RE: Change of base formula for Tetration - by jaydfox - 08/12/2007, 09:09 PM RE: Change of base formula for Tetration - by jaydfox - 08/12/2007, 09:30 PM RE: Change of base formula for Tetration - by andydude - 08/13/2007, 02:47 PM RE: Change of base formula for Tetration - by andydude - 08/13/2007, 02:58 PM RE: Change of base formula for Tetration - by jaydfox - 08/13/2007, 06:34 PM RE: Change of base formula for Tetration - by bo198214 - 08/13/2007, 07:31 PM RE: Change of base formula for Tetration - by bo198214 - 08/13/2007, 07:37 PM RE: Change of base formula for Tetration - by jaydfox - 08/13/2007, 08:03 PM RE: Change of base formula for Tetration - by bo198214 - 08/13/2007, 08:23 PM RE: Change of base formula for Tetration - by jaydfox - 08/13/2007, 08:32 PM RE: Change of base formula for Tetration - by bo198214 - 08/15/2007, 09:36 AM RE: Change of base formula for Tetration - by jaydfox - 08/15/2007, 10:15 AM RE: Change of base formula for Tetration - by jaydfox - 08/13/2007, 03:42 PM RE: Change of base formula for Tetration - by jaydfox - 08/15/2007, 11:29 PM RE: Change of base formula for Tetration - by jaydfox - 08/16/2007, 09:21 PM RE: Change of base formula for Tetration - by bo198214 - 08/16/2007, 09:32 PM RE: Change of base formula for Tetration - by jaydfox - 08/16/2007, 09:49 PM RE: Change of base formula for Tetration - by bo198214 - 08/16/2007, 09:53 PM RE: Change of base formula for Tetration - by jaydfox - 08/31/2007, 03:51 AM RE: Change of base formula for Tetration - by jaydfox - 08/31/2007, 06:24 AM RE: Change of base formula for Tetration - by bo198214 - 08/31/2007, 09:03 AM RE: Change of base formula for Tetration - by tommy1729 - 05/03/2009, 10:20 PM RE: Change of base formula for Tetration - by sheldonison - 05/05/2009, 11:21 AM RE: Change of base formula for Tetration - by tommy1729 - 05/05/2009, 12:19 PM RE: Change of base formula for Tetration - by sheldonison - 05/05/2009, 01:29 PM RE: Change of base formula for Tetration - by bo198214 - 05/05/2009, 01:37 PM RE: Change of base formula for Tetration - by jaydfox - 08/31/2007, 04:11 AM Convergence of Jay's change of base formula - by bo198214 - 08/15/2007, 09:00 PM RE: Parabolic Iteration - by jaydfox - 08/15/2007, 09:19 PM RE: Parabolic Iteration - by bo198214 - 08/15/2007, 09:30 PM RE: Parabolic Iteration - by jaydfox - 08/15/2007, 11:41 PM RE: Parabolic Iteration - by bo198214 - 08/16/2007, 08:17 AM RE: Parabolic Iteration - by jaydfox - 08/16/2007, 05:51 PM RE: Parabolic Iteration - by bo198214 - 08/16/2007, 06:40 PM RE: Parabolic Iteration - by jaydfox - 08/16/2007, 09:47 PM RE: Parabolic Iteration - by bo198214 - 08/16/2007, 10:07 PM

 Possibly Related Threads... Thread Author Replies Views Last Post Complex Tetration, to base exp(1/e) Ember Edison 7 4,773 08/14/2019, 09:15 AM Last Post: sheldonison Recursive formula generating bounded hyper-operators JmsNxn 0 2,108 01/17/2017, 05:10 AM Last Post: JmsNxn Is bounded tetration is analytic in the base argument? JmsNxn 0 1,921 01/02/2017, 06:38 AM Last Post: JmsNxn Extrapolated Faá Di Bruno's Formula Xorter 1 2,864 11/19/2016, 02:37 PM Last Post: Xorter [2015] 4th Zeration from base change pentation tommy1729 5 7,622 03/29/2015, 05:47 PM Last Post: tommy1729 Conjecture on semi-exp base change [2015] tommy1729 0 2,225 03/24/2015, 03:14 PM Last Post: tommy1729 tetration base sqrt(e) tommy1729 2 4,264 02/14/2015, 12:36 AM Last Post: tommy1729 Explicit formula for the tetration to base $$e^{1/e}$$? mike3 1 3,769 02/13/2015, 02:26 PM Last Post: Gottfried tetration base > exp(2/5) tommy1729 2 4,054 02/11/2015, 12:29 AM Last Post: tommy1729 about power towers and base change tommy1729 7 10,482 05/04/2014, 08:30 AM Last Post: tommy1729

Users browsing this thread: 1 Guest(s)