05/24/2008, 08:13 AM

I checked with the routine in PariTTY most kindly provided by Gottfried to me few trajectories of interesting points on real axis from fractal picture, .

If we look for without I on top, it is just real number 0.4745409995126511230174679441, while iterating with I on top obviosuly leads to oscillating behaviour since first iteration leads to

So I am looking for (a^(a^.........(a^I)) where

mybase = exp(-Pi/2)

%27 = 0.2078795763507619085469556198

ffrac_init(1.0*I,mybase)

ffrac_init(1.0*I,mybase)

%28 = 1.000000000000000000000000000*I

for(k=1,20,print(ffrac))

for(k=1,20,print(ffrac))

-2.524354897 E-29 - 1.000000000000000000000000000*I

-2.524354897 E-29 + 1.000000000000000000000000000*I

-7.57306469 E-29 - 1.000000000000000000000000000*I

-7.57306469 E-29 + 1.000000000000000000000000000*I

-2.019483917 E-28 - 1.000000000000000000000000000*I

-2.019483917 E-28 + 1.000000000000000000000000000*I

-5.301145284 E-28 - 1.000000000000000000000000000*I

-5.301145284 E-28 + 1.000000000000000000000000001*I

-1.337908095 E-27 - 1.000000000000000000000000001*I

-1.337908095 E-27 + 1.000000000000000000000000002*I

-3.332148464 E-27 - 1.000000000000000000000000002*I

-3.332148464 E-27 + 1.000000000000000000000000005*I

-8.25464051 E-27 - 1.000000000000000000000000005*I

-8.25464051 E-27 + 1.000000000000000000000000013*I

-2.039678757 E-26 - 1.000000000000000000000000013*I

-2.039678757 E-26 + 1.000000000000000000000000032*I

-5.036088018 E-26 - 1.000000000000000000000000032*I

-5.036088018 E-26 + 1.000000000000000000000000079*I

-1.242739915 E-25 - 1.000000000000000000000000079*I

-1.242739915 E-25 + 1.000000000000000000000000195*I

But perhaps this corresponds to case You mentioned, that iterations with z on top of a does not converge.

Ivars

If we look for without I on top, it is just real number 0.4745409995126511230174679441, while iterating with I on top obviosuly leads to oscillating behaviour since first iteration leads to

So I am looking for (a^(a^.........(a^I)) where

mybase = exp(-Pi/2)

%27 = 0.2078795763507619085469556198

ffrac_init(1.0*I,mybase)

ffrac_init(1.0*I,mybase)

%28 = 1.000000000000000000000000000*I

for(k=1,20,print(ffrac))

for(k=1,20,print(ffrac))

-2.524354897 E-29 - 1.000000000000000000000000000*I

-2.524354897 E-29 + 1.000000000000000000000000000*I

-7.57306469 E-29 - 1.000000000000000000000000000*I

-7.57306469 E-29 + 1.000000000000000000000000000*I

-2.019483917 E-28 - 1.000000000000000000000000000*I

-2.019483917 E-28 + 1.000000000000000000000000000*I

-5.301145284 E-28 - 1.000000000000000000000000000*I

-5.301145284 E-28 + 1.000000000000000000000000001*I

-1.337908095 E-27 - 1.000000000000000000000000001*I

-1.337908095 E-27 + 1.000000000000000000000000002*I

-3.332148464 E-27 - 1.000000000000000000000000002*I

-3.332148464 E-27 + 1.000000000000000000000000005*I

-8.25464051 E-27 - 1.000000000000000000000000005*I

-8.25464051 E-27 + 1.000000000000000000000000013*I

-2.039678757 E-26 - 1.000000000000000000000000013*I

-2.039678757 E-26 + 1.000000000000000000000000032*I

-5.036088018 E-26 - 1.000000000000000000000000032*I

-5.036088018 E-26 + 1.000000000000000000000000079*I

-1.242739915 E-25 - 1.000000000000000000000000079*I

-1.242739915 E-25 + 1.000000000000000000000000195*I

But perhaps this corresponds to case You mentioned, that iterations with z on top of a does not converge.

Ivars