Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Fractals from calculations of 2^I, 2^(2^I), 2^(2^(2^I).. a^(a^(...a^I)
Gottfried Wrote:Here are some plots of that tri-furcation, see uncommented list below.
I find the bi-,tri- and multifurcation an interesting subject, as we ask: can we assign an individual value if the iteration oscillates/is furcated - since this is somehow related to the partial evaluation of non-convergent oscillating series, to which we assign a value anyway.

Yes, that is an interesting idea, that these seemingly convergent iterations are actually divergent but get the value in the same way like e.g. series 1-1+1-1..........= 1/2. What then, one would assign to the point which when iterated with on top oscillates between and ?

From complex geometric series , would we have to assign value to that Iteration by analogy with divergent (?) sum:

whose module is and argument , so value would be:

No, the sum is not the same as . First I have to generate such sum where only odd powers of I are present.


Messages In This Thread
RE: Fractals from calculations of 2^I, 2^(2^I), 2^(2^(2^I).. a^(a^(...a^I) - by Ivars - 05/25/2008, 06:08 PM

Possibly Related Threads...
Thread Author Replies Views Last Post
  Different Style of Tetration Fractals stephrenny 5 6,514 12/21/2017, 07:49 AM
Last Post: Gottfried
  Tetrate fractals 73939 0 3,285 07/02/2010, 03:18 PM
Last Post: 73939
  Continuous iteration of fractals Daniel 0 3,245 08/30/2007, 09:55 PM
Last Post: Daniel

Users browsing this thread: 2 Guest(s)