• 0 Vote(s) - 0 Average
• 1
• 2
• 3
• 4
• 5
 matrix function like iteration without power series expansion Gottfried Ultimate Fellow Posts: 758 Threads: 117 Joined: Aug 2007 07/10/2008, 07:01 AM (This post was last modified: 07/10/2008, 07:32 AM by Gottfried.) I've got better convergence for the binomial (Woon-) method when computing f°0.5(x) by $\hspace{24} y_k = f^{\circ k+0.5}(x)$ (using Woon-method) $\hspace{24} f^{\circ 0.5}(x) = f^{\circ -k}(y)$ (using integer iteration) (but not yet for the Stirling-transformation. This became even worse) Also, the value, computed by diagonalization is verified (and seems to be the best approximation, see below) Here is the list of partial sums of the series for different k+0.5 (with a slight Euler-acceleration) Table of partial sums of series-terms for y_k = f°{k+0.5}(1), f(x)= sqrt(2)^x using 96 terms for all computations Code:k+0.5=  0.5    ...     5.5              6.5              7.5              8.5             9.5 ---------------------------------------------------------------------------------------------------   1.25000000000   1.25000000000   1.25000000000   1.25000000000   1.25000000000      1.25000000000   1.26110434560   4.49714780164   5.14435649285   5.79156518406   6.43877387527      7.08598256648   1.22525437136   1.93944375677  -3.72023614787  -5.88364612747  -8.42967369556     -11.3583188521   1.24668751623   5.99235259508   9.11068722540   13.5553576094   19.5849074109      27.4578802935   1.24076737182   1.49979923591  -5.23653818585  -11.6346957756  -21.7708420705     -36.9172871478   1.24335352318   4.28644727119   7.88117550221   15.1234185961   28.4432394460      51.2082273200   1.24296927970   0.47806011620  -2.27471644838  -8.89792678520  -23.1008859405     -50.9291782428   1.24330148390   2.68540223884   4.57545778450   9.77997787357   22.6057608416      51.2598956353   1.24334689776   1.52931366136  0.451609309727  -3.07391363987  -13.0838077583     -38.5219403266   1.24342527754   2.08739469898   2.71206223922   4.90465898282   11.8835163557      31.8389560094   1.24346627727   1.83531664757   1.56559795649  0.365479208323  -4.00667177875     -18.0519511170   1.24349944650   1.94309092062   2.11054106819   2.76424236321   5.31674044248      14.3664345470   1.24352286906   1.89908422835   1.86530727995   1.57378990702  0.216343075033     -5.15411825349   1.24354080559   1.91636602471   1.97064237771   2.13360031601   2.84254373454      5.84385041401   1.24355452136   1.90980233711   1.92717452801   1.88231915313   1.55966874840  -0.00183357885750   1.24356526803   1.91222417243   1.94449952880   1.99063473377   2.15814548109      2.95012751435   1.24357379457   1.91135286176   1.93780095156   1.94557320516   1.89002762276      1.52540063456   1.24358065583   1.91165944033   1.94032249372   1.96374161889   2.00591813819      2.18595121356   1.24358624145   1.91155367278   1.93939558496   1.95661723354   1.95739708093      1.89047738279   1.24359083767   1.91158952482   1.93972916723   1.95934236079   1.97714102763      2.01847035148   1.24359465614   1.91157756208   1.93961137808   1.95832298338   1.96931015585      1.96460639324   1.24359785628   1.91158149694   1.93965226197   1.95869669466   1.97234499833      1.98668941734   1.24360055956   1.91158021912   1.93963829064   1.95856216865   1.97119328258      1.97784819071   1.24360285978   1.91158062912   1.93964299792   1.95860979575   1.97162207811      1.98131215334   1.24360483013   1.91158049890   1.93964143237   1.95859318842   1.97146519999      1.97998157171   1.24360652831   1.91158053980   1.93964194690   1.95859889909   1.97152168166      1.98048347876   1.24360800024   1.91158052704   1.93964177964   1.95859696045   1.97150164438      1.98029729442   1.24360928281   1.91158053097   1.93964183347   1.95859761081   1.97150865646      1.98036530182   1.24361040586   1.91158052975   1.93964181631   1.95859739502   1.97150623337      1.98034081358   1.24361139372   1.91158053011   1.93964182174   1.95859746589   1.97150706093      1.98034951501   1.24361226636   1.91158052999   1.93964182004   1.95859744283   1.97150678136      1.98034646112   1.24361304032   1.91158053002   1.93964182057   1.95859745027   1.97150687485      1.98034752063   1.24361372931   1.91158053001   1.93964182041   1.95859744789   1.97150684388      1.98034715699   1.24361434483   1.91158053001   1.93964182046   1.95859744865   1.97150685405      1.98034728054   1.24361489654   1.91158053001   1.93964182044   1.95859744841   1.97150685074      1.98034723896   1.24361539259   1.91158053001   1.93964182045   1.95859744848   1.97150685181      1.98034725283   1.24361583993   1.91158053001   1.93964182044   1.95859744846   1.97150685147      1.98034724824   1.24361624445   1.91158053001   1.93964182045   1.95859744847   1.97150685158      1.98034724975   1.24361661124   1.91158053001   1.93964182045   1.95859744846   1.97150685154      1.98034724926   1.24361694464   1.91158053001   1.93964182045   1.95859744846   1.97150685155      1.98034724942   1.24361724842   1.91158053001   1.93964182045   1.95859744846   1.97150685155      1.98034724937   1.24361752584   1.91158053001   1.93964182045   1.95859744846   1.97150685155      1.98034724938   1.24361777974   1.91158053001   1.93964182045   1.95859744846   1.97150685155      1.98034724938   1.24361801259   1.91158053001   1.93964182045   1.95859744846   1.97150685155      1.98034724938   1.24361822655   1.91158053001   1.93964182045   1.95859744846   1.97150685155      1.98034724938   1.24361842353   1.91158053001   1.93964182045   1.95859744846   1.97150685155      1.98034724938   1.24361860521   1.91158053001   1.93964182045   1.95859744846   1.97150685155      1.98034724938   1.24361877306   1.91158053001   1.93964182045   1.95859744846   1.97150685155      1.98034724938   1.24361892839   1.91158053001   1.93964182045   1.95859744846   1.97150685155      1.98034724938   1.24361907236   1.91158053000   1.93964182045   1.95859744846   1.97150685155      1.98034724938   1.24361920601   1.91158053000   1.93964182045   1.95859744846   1.97150685155      1.98034724938   1.24361933026   1.91158053000   1.93964182045   1.95859744846   1.97150685155      1.98034724938   1.24361944593   1.91158053000   1.93964182045   1.95859744846   1.97150685155      1.98034724938   1.24361955376   1.91158053000   1.93964182045   1.95859744846   1.97150685155      1.98034724938   1.24361965442   1.91158053000   1.93964182045   1.95859744846   1.97150685155      1.98034724938 .... We see the improving of convergence for higher k. Here are the results of the second part of computation Table for f°0.5(1) computed by f°{-k}(y_k) Code:using   value for k+0.5   f°0.5(1) ------------------------------------------- _0.5:  1.24362081784741256884404697491 _1.5:  1.24362164528491826158633097226 _2.5:  1.24362162704002978026654871300 _3.5:  1.24362162769989241325230973243 _4.5:  1.24362162766649448252099408767 _5.5:  1.24362162766868372429248670409 _6.5:  1.24362162766850631390326437050 _7.5:  1.24362162766852353956309027978 _8.5:  1.24362162766852158056624384012 _9.5:  1.24362162766852183704563622465 10.5:  1.24362162766852179891157968560 11.5:  1.24362162766852180527979917972 12.5:  1.24362162766852180409621393150 13.5:  1.24362162766852180433916726086 14.5:  1.24362162766852180428444683747 15.5:  1.24362162766852180429789422049 16.5:  1.24362162766852180429430608135 17.5:  1.24362162766852180429534120427 18.5:  1.24362162766852180429501955967 19.5:  1.24362162766852180429512685495 20.5:  1.24362162766852180429508854399 21.5:  1.24362162766852180429510314755 22.5:  1.24362162766852180429509721882 23.5:  1.24362162766852180429509977687 Computed by Diagonalization method (with fixpoint-shift to fixpoint 2) Code:diag:  1.24362162766852180429509898361compare: Code:_0.5:  1.243620... _2.5:  1.2436216270... 18.5:  1.24362162766852180429502... 20.5:  1.24362162766852180429508... 22.5:  1.24362162766852180429509 | 721882... diag:  1.24362162766852180429509 | 898361... 23.5:  1.24362162766852180429509 | 977687... 21.5:  1.24362162766852180429510... 19.5:  1.24362162766852180429512... _1.5:  1.24362164... Gottfried Helms, Kassel « Next Oldest | Next Newest »

 Messages In This Thread matrix function like iteration without power series expansion - by bo198214 - 06/30/2008, 03:01 PM RE: matrix function like iteration without power series expansion - by Gottfried - 06/30/2008, 09:23 PM RE: matrix function like iteration without power series expansion - by bo198214 - 07/01/2008, 06:48 AM RE: matrix function like iteration without power series expansion - by Gottfried - 07/01/2008, 02:18 PM RE: matrix function like iteration without power series expansion - by Gottfried - 07/02/2008, 11:23 AM RE: matrix function like iteration without power series expansion - by Gottfried - 07/08/2008, 06:56 AM RE: matrix function like iteration without power series expansion - by andydude - 07/08/2008, 06:01 PM RE: matrix function like iteration without power series expansion - by andydude - 07/08/2008, 09:35 PM RE: matrix function like iteration without power series expansion - by Gottfried - 07/08/2008, 06:23 PM RE: matrix function like iteration without power series expansion - by Gottfried - 07/09/2008, 08:58 AM RE: matrix function like iteration without power series expansion - by andydude - 07/09/2008, 02:38 PM RE: matrix function like iteration without power series expansion - by andydude - 07/09/2008, 02:57 PM RE: matrix function like iteration without power series expansion - by bo198214 - 07/09/2008, 06:18 PM RE: matrix function like iteration without power series expansion - by andydude - 07/14/2008, 06:21 PM RE: matrix function like iteration without power series expansion - by bo198214 - 07/14/2008, 09:55 PM RE: matrix function like iteration without power series expansion - by Gottfried - 07/10/2008, 07:01 AM

 Possibly Related Threads... Thread Author Replies Views Last Post New mathematical object - hyperanalytic function arybnikov 4 211 01/02/2020, 01:38 AM Last Post: arybnikov Perhaps a new series for log^0.5(x) Gottfried 0 172 12/05/2019, 04:35 PM Last Post: Gottfried Is there a function space for tetration? Chenjesu 0 444 06/23/2019, 08:24 PM Last Post: Chenjesu A Notation Question (raising the highest value in pow-tower to a different power) Micah 8 2,688 02/18/2019, 10:34 PM Last Post: Micah Degamma function Xorter 0 892 10/22/2018, 11:29 AM Last Post: Xorter Taylor series of i[x] Xorter 12 11,777 02/20/2018, 09:55 PM Last Post: Xorter Functional power Xorter 0 1,333 03/11/2017, 10:22 AM Last Post: Xorter Complaining about MSE ; attitude against tetration and iteration series ! tommy1729 0 1,624 12/26/2016, 03:01 AM Last Post: tommy1729 2 fixpoints , 1 period --> method of iteration series tommy1729 0 1,628 12/21/2016, 01:27 PM Last Post: tommy1729 2 fixpoints related by power ? tommy1729 0 1,470 12/07/2016, 01:29 PM Last Post: tommy1729

Users browsing this thread: 1 Guest(s)