• 0 Vote(s) - 0 Average
• 1
• 2
• 3
• 4
• 5
 Iteration exercises: f(x)=1/(1+x) Gottfried Ultimate Fellow Posts: 852 Threads: 126 Joined: Aug 2007 01/30/2009, 09:14 AM Hi friends - just for my own exercise I've looked at the iteration of f(x) = 1/(1+x). I've posed my discussion in a sci.math-thread with some interesting answers and have put things together in an article iteration 1/(1+x) I asked in sci.math, whether concurring methods for continuous iteration are possible; but with that simple function it seems, that all formulae including the matrix-diagonalization-method (and regular iteration with fixpoint-shift) lead (exactly) to the same results. I'd still like to see, whether there are other iteration-approaches for this function to improve my understanding of the more general whereabouts an possible limitations of the regular iteration. Gottfried Gottfried Helms, Kassel bo198214 Administrator Posts: 1,525 Threads: 96 Joined: Aug 2007 03/27/2010, 10:16 PM (01/30/2009, 09:14 AM)Gottfried Wrote: just for my own exercise I've looked at the iteration of f(x) = 1/(1+x). The interesting thing about fractional linear function is indeed that it does not depend on the fixed point. Particularly interesting does this become with non-real fixed points, like for example: $f(z)=\frac{z-1}{z+1}$ This function has two non-real fixed points: i and -i. The regular iterations at both fixed points coincide (which is only the case with linear fractions, and we know for example that this is not the case for $f(z)=e^z$). Particularly it is real. There is a different way to compute the regular iteration. These linear fractions have the interesting property that they can be represented by its 2x2 matrices, in this case: $\begin{pmatrix}1 &-1\\1 &1\end{pmatrix}$ composition of two linear fractions corresponds to multiplication of their matrices. And hence we can use here also matrix powers to obtain the regular iteration. Without making the calculations too explicit, I give the result here: $f^{\circ u}(z)=\frac{\cos(\frac{\pi}{4}u)z-\sin(\frac{\pi}{4}u) }{\sin(\frac{\pi}{4}u)z+\cos(\frac{\pi}{4}u)}$ To optically verify the iteration, I give the graphs for $u=0\dots 1$.     If you wonder where this $\frac{\pi}{4}$ factor comes from, its the angle of the eigenvalue(s) of the matrix, which are in this case $1+i$ and $1-i$. tommy1729 Ultimate Fellow Posts: 1,668 Threads: 368 Joined: Feb 2009 07/28/2010, 03:47 PM regular iterations at n fixed points correspond when the function can be represented by an n x n matrix with real or positive real entries. for finite n of course. if i recall correctly ... bo198214 Administrator Posts: 1,525 Threads: 96 Joined: Aug 2007 07/29/2010, 04:50 AM (07/28/2010, 03:47 PM)tommy1729 Wrote: regular iterations at n fixed points correspond when the function can be represented by an n x n matrix with real or positive real entries. ... if i recall correctly ... Recall from where? I dont know about other finite matrix representations than those 2x2 of linear fractions (but was wondering whether it exists). Matrix representation $M_f$ in the sense that $M_{f\circ g}=M_f M_g$. For example which kind of function is representable with 3x3 matrices? tommy1729 Ultimate Fellow Posts: 1,668 Threads: 368 Joined: Feb 2009 08/01/2010, 04:52 PM i dont know if it helps , but there is a relation to number representations. extensions or variations on complex numbers can be given by square matrices. then finding their parts ( e.g. real part ) leads to functions. those functions satisfy differential equations and they link the matrix to functions ... well at least for some 2n x 2n matrices. not sure about 3x3. that might sound complicated ... tommy1729 « Next Oldest | Next Newest »

 Possibly Related Threads… Thread Author Replies Views Last Post Fractional iteration of x^2+1 at infinity and fractional iteration of exp bo198214 17 29,096 06/11/2022, 12:24 PM Last Post: tommy1729 Inverse Iteration Xorter 3 7,573 02/05/2019, 09:58 AM Last Post: MrFrety Iteration exercises: f(x)=x^2 - 0.5 ; Fixpoint-irritation... Gottfried 23 57,209 10/20/2017, 08:32 PM Last Post: Gottfried Half-iteration of x^(n^2) + 1 tommy1729 3 8,850 03/09/2017, 10:02 PM Last Post: Xorter Iteration basics Ivars 27 47,997 01/02/2017, 05:21 PM Last Post: Xorter Iteration exercises: Lucas-Lehmer-test and SchrÃ¶der-function Gottfried 0 4,306 04/04/2012, 06:17 AM Last Post: Gottfried Iteration series: Different fixpoints and iteration series (of an example polynomial) Gottfried 0 4,925 09/04/2011, 05:59 AM Last Post: Gottfried Iteration series Gottfried 3 8,658 08/10/2009, 04:16 PM Last Post: Gottfried Iteration-exercises: article on Bell-numbers Gottfried 0 4,023 05/31/2008, 10:32 AM Last Post: Gottfried Iteration by Ramanujan Gottfried 8 16,045 05/28/2008, 06:52 AM Last Post: bo198214

Users browsing this thread: 1 Guest(s)