• 0 Vote(s) - 0 Average
• 1
• 2
• 3
• 4
• 5
 tetration base conversion, and sexp/slog limit equations sheldonison Long Time Fellow Posts: 626 Threads: 22 Joined: Oct 2008 03/09/2009, 06:34 PM (This post was last modified: 03/10/2009, 03:51 PM by sheldonison.) $\theta(x) = \text{slog}_{v2}(\text{sexp}_{v1}(x))-x$ Back to characterizing the $\theta$ for the published sexp base e equation (version v1), compared to base 1.45 approximated with a 3rd order slog (version v2). At one point I thought the theta might be a relatively simple sin(2*pi*x+phase) type of function, but there are definitely higher harmonics, although the second harmonic sin(4*pi*x) is about 120 times smaller than the main harmonic. Given everything I know so far, the proposal is the following limit, using a linear approximation for the critical section for slog/sexp b $\text{sexp}_c(x) = \lim_{b \to \eta^+}\text{ } \lim_{n \to \infty} \text{log}_c^{\circ n}(\text{sexp}_b (x + \text{slog}_b(\text{sexp}_c(n)))$ converges, and all of its derivatives are continuous. For each base=c, there's a 1-cyclic $\theta$ function, linking this sexp definition with the traditional sexp function. Unless $\theta$ is badly behaved, the $\text{sexp}_{v2}(x)=\text{sexp}_{v1}(x+\theta(x))$ will also be continuous for all of its derivatives, and possibly analytic. This isn't new, Dimitrii points out on his wiki that the theta transfer function allows constructing other solutions of tetration with a reduced range of convergence in the complex plane, due to singularities caused by theta. The only advantage of this particular alternate sexp definition is that it has constant base conversions between any two bases. But the addition of the theta function introduces a wobble, that becomes more apparent in the higher derivatives; the odd derivatives are no longer positive for all x>-2. Finally, for smaller values of bases, the magnitude of the 1-cyclic $\theta$ function, generated by comparing the two sexp functions for the same base, gets arbitrarily small as the base=c approaches e^(1/e). This is also critical to the convergence of the limit equation. « Next Oldest | Next Newest »

 Messages In This Thread tetration base conversion, and sexp/slog limit equations - by sheldonison - 02/18/2009, 07:01 AM RE: tetration base conversion, questions and results - by sheldonison - 02/19/2009, 12:10 AM tetration base conversion, uniqueness criterion? - by bo198214 - 02/19/2009, 04:24 PM RE: tetration base conversion, uniqueness criterion? - by sheldonison - 02/20/2009, 10:54 AM RE: tetration base conversion, uniqueness criterion? - by bo198214 - 02/20/2009, 01:07 PM RE: tetration base conversion, uniqueness criterion? - by sheldonison - 02/20/2009, 02:51 PM RE: tetration base conversion, uniqueness criterion? - by sheldonison - 02/21/2009, 12:18 AM RE: tetration base conversion, uniqueness criterion? - by bo198214 - 02/21/2009, 12:39 PM RE: tetration base conversion, uniqueness criterion? - by sheldonison - 02/21/2009, 02:59 PM RE: tetration base conversion, uniqueness criterion? - by bo198214 - 02/21/2009, 06:36 PM RE: tetration base conversion, uniqueness criterion? - by sheldonison - 02/22/2009, 04:41 AM RE: tetration base conversion, uniqueness criterion? - by sheldonison - 02/22/2009, 04:04 PM RE: tetration base conversion, uniqueness criterion? - by sheldonison - 02/24/2009, 08:24 PM RE: tetration base conversion, uniqueness criterion? - by bo198214 - 02/24/2009, 09:57 PM RE: tetration base conversion, uniqueness criterion? - by bo198214 - 02/24/2009, 10:21 PM RE: tetration base conversion, uniqueness criterion? - by sheldonison - 02/24/2009, 10:54 PM RE: tetration base conversion, uniqueness criterion? - by bo198214 - 02/24/2009, 11:06 PM RE: tetration base conversion, and sexp/slog limit equations - by sheldonison - 02/26/2009, 11:04 AM RE: tetration base conversion, and sexp/slog limit equations - by bo198214 - 02/26/2009, 12:16 PM RE: tetration base conversion, and sexp/slog limit equations - by sheldonison - 02/26/2009, 02:36 PM RE: tetration base conversion, and sexp/slog limit equations - by sheldonison - 02/28/2009, 05:56 AM RE: tetration base conversion, and sexp/slog limit equations - by sheldonison - 02/28/2009, 10:01 AM RE: tetration base conversion, and sexp/slog limit equations - by sheldonison - 03/01/2009, 12:18 PM RE: tetration base conversion, and sexp/slog limit equations - by sheldonison - 03/03/2009, 06:15 PM RE: tetration base conversion, and sexp/slog limit equations - by bo198214 - 03/03/2009, 06:46 PM RE: tetration base conversion, and sexp/slog limit equations - by sheldonison - 03/03/2009, 07:27 PM RE: tetration base conversion, and sexp/slog limit equations - by sheldonison - 03/09/2009, 06:34 PM Summay tetration base conversion, and sexp/slog limit equations - by sheldonison - 07/31/2009, 06:55 PM RE: Summay tetration base conversion, and sexp/slog limit equations - by sheldonison - 08/01/2009, 10:32 AM Is it analytic? - by sheldonison - 12/22/2009, 11:39 PM RE: tetration base conversion, and sexp/slog limit equations - by mike3 - 12/25/2009, 08:51 PM RE: tetration base conversion, and sexp/slog limit equations - by sheldonison - 12/26/2009, 01:44 AM RE: tetration base conversion, and sexp/slog limit equations - by mike3 - 12/26/2009, 01:54 AM RE: tetration base conversion, and sexp/slog limit equations - by sheldonison - 12/27/2009, 06:53 AM RE: tetration base conversion, and sexp/slog limit equations - by mike3 - 12/31/2009, 11:45 PM Inherent ringing in tetration, re: base conversion - by sheldonison - 01/02/2010, 05:31 AM RE: Inherent ringing in tetration, base conversion - by mike3 - 01/04/2010, 03:51 AM RE: Inherent ringing in tetration, base conversion - by sheldonison - 01/04/2010, 06:08 AM RE: tetration base conversion, and sexp/slog limit equations - by tommy1729 - 02/26/2013, 10:47 PM RE: tetration base conversion, and sexp/slog limit equations - by sheldonison - 02/27/2013, 07:05 PM

 Possibly Related Threads... Thread Author Replies Views Last Post Complex Tetration, to base exp(1/e) Ember Edison 7 1,086 08/14/2019, 09:15 AM Last Post: sheldonison Is bounded tetration is analytic in the base argument? JmsNxn 0 1,177 01/02/2017, 06:38 AM Last Post: JmsNxn Sexp redefined ? Exp^[a]( - 00 ). + question ( TPID 19 ??) tommy1729 0 1,416 09/06/2016, 04:23 PM Last Post: tommy1729 Taylor polynomial. System of equations for the coefficients. marraco 17 14,997 08/23/2016, 11:25 AM Last Post: Gottfried Dangerous limits ... Tommy's limit paradox tommy1729 0 1,733 11/27/2015, 12:36 AM Last Post: tommy1729 tetration limit ?? tommy1729 40 43,451 06/15/2015, 01:00 AM Last Post: sheldonison Some slog stuff tommy1729 15 10,989 05/14/2015, 09:25 PM Last Post: tommy1729 Totient equations tommy1729 0 1,613 05/08/2015, 11:20 PM Last Post: tommy1729 Bundle equations for bases > 2 tommy1729 0 1,613 04/18/2015, 12:24 PM Last Post: tommy1729 Limit of mean of Iterations of f(x)=(ln(x);x>0,ln(-x) x<0) =-Omega constant for all x Ivars 10 13,762 03/29/2015, 08:02 PM Last Post: tommy1729

Users browsing this thread: 1 Guest(s)