• 0 Vote(s) - 0 Average
• 1
• 2
• 3
• 4
• 5
 tetration base conversion, and sexp/slog limit equations sheldonison Long Time Fellow Posts: 641 Threads: 22 Joined: Oct 2008 07/31/2009, 06:55 PM (This post was last modified: 08/01/2009, 10:37 AM by sheldonison.) Henryk sent me a nice note asking me whether I wanted to contribute to the co-authored paper. I don't think I'm up to the task, mathematically. But a few months ago, I did spend some effort trying to analyze the sexp base change equations in the complex plane, converting to base(e). Perhaps some of you may be interested. What I found, heuristically, is that for values of x with imag>=1 the limit equation for different values of n seems to give different non-converging values, and I don't think the equation converges for any values with imag>0. And that is really about as far as I got. Now, I want to describe some of the equations I used in the analysis. The first thing I did was start with this equation, that I was using all along. In these equations, sexp_e is referring to a definition of sexp with a base conversion constant, as described earlier in this post. $\text{sexp}_e(x) = \lim_{b \to \eta^+}\text{ } \lim_{n \to \infty} \text{log}_e^{\circ n}(\text{sexp}_b (x + \text{slog}_b(\text{sexp}_e(n)))$ After reading the posts about sexp upper, I made the following change, which should be identical at the real axis. Here the limit as b approaches $\eta^+$ is changed to $\eta \text{.upper}$. The advantage is that eta.upper is complete, and defined everywhere in the complex plane, and now there is only one limit in the equation. Also, once again, I think this turns out to be the approach Jay had in mind! $\text{sexp}_e(x) = \lim_{n \to \infty} \text{log}_e^{\circ n}(\text{sexp}_{\eta\text{.upper}} (x + \text{slog}_{\eta\text{.upper}}(\text{sexp}_e(n)))$ Further simplification comes from the fact that this is really just a constant, equal to the base conversion constant from eta.upper to base e. $\text{const}= \lim_{n \to \infty} \text{slog}_{\eta\text{.upper}}(\text{sexp}_e(n))-n$ Plugging this back in, we get the following fairly clean equation. $\text{sexp}_e(x) = \lim_{n \to \infty} \text{log}_e^{\circ n}(\text{sexp}_{\eta\text{.upper}} (x + n + \text{const}))$ This equation converges nicely at the real axis, and it does so for relatively small values of n. In fact, convergence is "super-exponential" as n increases, and the number of digits of accuracy quickly becomes larger than the number of atoms in the universe. But as soon as you consider complex values things get much messier. My analysis skills are pushed beyond their limits in iterating the logarithms for the complex valued function for $\eta \text{.upper}$. And as far as I can tell, it doesn't converge, period. That's because the complex argument for x means sexp_eta.upper no longer increases to arbitrarily large numbers. In fact, for values with imag=1, the sexp function for base eta.upper reaches a maximum value with real=~6.3, and then a minimum around real=~-6.6. After that, the real portion slowly grows towards e as x goes to infinity. Taking the iterated natural logarithms of eta.upper(i=1) doesn't converge. In other words, solving for a strip of the sexp(x, i=1), I find that sexp(x+1)<>e^sexp(x), so the result isn't converging. At best, it may pretend to converge to the fixed point of sexp_e(x), but even if that was the case that it was converging towards the fixed point of sexp(e), then at the strip boundaries, the derivative is discontinous, d/dx sexp(x+1)<> d/dx e^sexp(x). Again, that's as far as I got. For smaller values of the imag, it the real portion does grow for awhile, but as soon as the imaginary portion catches up, the results become chaotic, and I couldn't see how the iterated logarithms could converge. So I gave up. It converges so nicely at the real number line, perhaps it is non-analytic or has a taylor series convergence radius of 0. - Sheldon Levenstein « Next Oldest | Next Newest »

 Messages In This Thread tetration base conversion, and sexp/slog limit equations - by sheldonison - 02/18/2009, 07:01 AM RE: tetration base conversion, questions and results - by sheldonison - 02/19/2009, 12:10 AM tetration base conversion, uniqueness criterion? - by bo198214 - 02/19/2009, 04:24 PM RE: tetration base conversion, uniqueness criterion? - by sheldonison - 02/20/2009, 10:54 AM RE: tetration base conversion, uniqueness criterion? - by bo198214 - 02/20/2009, 01:07 PM RE: tetration base conversion, uniqueness criterion? - by sheldonison - 02/20/2009, 02:51 PM RE: tetration base conversion, uniqueness criterion? - by sheldonison - 02/21/2009, 12:18 AM RE: tetration base conversion, uniqueness criterion? - by bo198214 - 02/21/2009, 12:39 PM RE: tetration base conversion, uniqueness criterion? - by sheldonison - 02/21/2009, 02:59 PM RE: tetration base conversion, uniqueness criterion? - by bo198214 - 02/21/2009, 06:36 PM RE: tetration base conversion, uniqueness criterion? - by sheldonison - 02/22/2009, 04:41 AM RE: tetration base conversion, uniqueness criterion? - by sheldonison - 02/22/2009, 04:04 PM RE: tetration base conversion, uniqueness criterion? - by sheldonison - 02/24/2009, 08:24 PM RE: tetration base conversion, uniqueness criterion? - by bo198214 - 02/24/2009, 09:57 PM RE: tetration base conversion, uniqueness criterion? - by bo198214 - 02/24/2009, 10:21 PM RE: tetration base conversion, uniqueness criterion? - by sheldonison - 02/24/2009, 10:54 PM RE: tetration base conversion, uniqueness criterion? - by bo198214 - 02/24/2009, 11:06 PM RE: tetration base conversion, and sexp/slog limit equations - by sheldonison - 02/26/2009, 11:04 AM RE: tetration base conversion, and sexp/slog limit equations - by bo198214 - 02/26/2009, 12:16 PM RE: tetration base conversion, and sexp/slog limit equations - by sheldonison - 02/26/2009, 02:36 PM RE: tetration base conversion, and sexp/slog limit equations - by sheldonison - 02/28/2009, 05:56 AM RE: tetration base conversion, and sexp/slog limit equations - by sheldonison - 02/28/2009, 10:01 AM RE: tetration base conversion, and sexp/slog limit equations - by sheldonison - 03/01/2009, 12:18 PM RE: tetration base conversion, and sexp/slog limit equations - by sheldonison - 03/03/2009, 06:15 PM RE: tetration base conversion, and sexp/slog limit equations - by bo198214 - 03/03/2009, 06:46 PM RE: tetration base conversion, and sexp/slog limit equations - by sheldonison - 03/03/2009, 07:27 PM RE: tetration base conversion, and sexp/slog limit equations - by sheldonison - 03/09/2009, 06:34 PM Summay tetration base conversion, and sexp/slog limit equations - by sheldonison - 07/31/2009, 06:55 PM RE: Summay tetration base conversion, and sexp/slog limit equations - by sheldonison - 08/01/2009, 10:32 AM Is it analytic? - by sheldonison - 12/22/2009, 11:39 PM RE: tetration base conversion, and sexp/slog limit equations - by mike3 - 12/25/2009, 08:51 PM RE: tetration base conversion, and sexp/slog limit equations - by sheldonison - 12/26/2009, 01:44 AM RE: tetration base conversion, and sexp/slog limit equations - by mike3 - 12/26/2009, 01:54 AM RE: tetration base conversion, and sexp/slog limit equations - by sheldonison - 12/27/2009, 06:53 AM RE: tetration base conversion, and sexp/slog limit equations - by mike3 - 12/31/2009, 11:45 PM Inherent ringing in tetration, re: base conversion - by sheldonison - 01/02/2010, 05:31 AM RE: Inherent ringing in tetration, base conversion - by mike3 - 01/04/2010, 03:51 AM RE: Inherent ringing in tetration, base conversion - by sheldonison - 01/04/2010, 06:08 AM RE: tetration base conversion, and sexp/slog limit equations - by tommy1729 - 02/26/2013, 10:47 PM RE: tetration base conversion, and sexp/slog limit equations - by sheldonison - 02/27/2013, 07:05 PM

 Possibly Related Threads... Thread Author Replies Views Last Post Moving between Abel's and Schroeder's Functional Equations Daniel 1 528 01/16/2020, 10:08 PM Last Post: sheldonison Complex Tetration, to base exp(1/e) Ember Edison 7 3,031 08/14/2019, 09:15 AM Last Post: sheldonison Is bounded tetration is analytic in the base argument? JmsNxn 0 1,566 01/02/2017, 06:38 AM Last Post: JmsNxn Sexp redefined ? Exp^[a]( - 00 ). + question ( TPID 19 ??) tommy1729 0 1,806 09/06/2016, 04:23 PM Last Post: tommy1729 Taylor polynomial. System of equations for the coefficients. marraco 17 18,191 08/23/2016, 11:25 AM Last Post: Gottfried Dangerous limits ... Tommy's limit paradox tommy1729 0 2,076 11/27/2015, 12:36 AM Last Post: tommy1729 tetration limit ?? tommy1729 40 52,621 06/15/2015, 01:00 AM Last Post: sheldonison Some slog stuff tommy1729 15 14,011 05/14/2015, 09:25 PM Last Post: tommy1729 Totient equations tommy1729 0 1,960 05/08/2015, 11:20 PM Last Post: tommy1729 Bundle equations for bases > 2 tommy1729 0 1,988 04/18/2015, 12:24 PM Last Post: tommy1729

Users browsing this thread: 1 Guest(s)