Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
elementary superfunctions
#11
bo198214 Wrote:Yes exactly those formula I was looking for!
However can you shorten them a bit by gathering terms or introducing constants for repeatedly occuring terms?
If possible it would be very preferable to indicate the fixed point, if the super-function is obtained by regular iteration.
Would anyway be good if you could explain how you obtained the formulas or what the idea behind is.

just like ansus you dont seem to realize mathematica just uses a handful solutions and all others are special cases.

notice for instance that EVERY f(x) in this thread are

1) f(x) = polynomial ( see also "logistic map" and " inverse hypergeo " )

2) f(x) = moebius = (a x + b)/(c x + d)

3) f(x) = a + b x^c

and 2) has a closed form solution so all that one needs to do to find the superfunction of e.g. 1 / a x + b is to fill in some variables in the general formula.


at this point , its just that simple.

regards

tommy1729
Reply
#12
Ansus Wrote:The superfunction for 1/x is probably indeed complex. Why do you suppose it to be real?

Well I was rather after real functions.
Input strictly increasing, output real.

What does mathematica say about
?
This is strictly increasing and has no real fixed point.
Reply
#13
Ansus Wrote:But I wonder why Mathematica did not find something like



which is a case of


Interestingly Maple finds exactly that solution.
Reply
#14
Ansus Wrote:I've verified both and both indeed correct solutions. Mathematica finds for the general case of .

What Maple gives for ?

Nothing Smile
Reply
#15
Introduction.

I begin with this introduction in order to indicate, how do I understand the super-functions and our role about them. I remember that the Moderator has an ability to remove this introduction, together with all the lyrics around (and I appreciate his good will to keep all the posts so dry as his gunpowder); however, I hope the definitions below do not contradict those he suggested for our joint paper (which is "yet to be finished" during several last months); so, some definitions have some chance to survive.

Terminology

'''Superfunction''' comes from iteration of some given function , called "base-function" or "transfer function". There is some analogy with fiber optics, which explains why this should be called "transfer function". Those who hate any physics (and, especially, the phenomenological fiber optics), may imagine that the function transfers the value of function at some point to the value at the point , as the basic equation suggests:



This equation is very basic; so, the only given function may also be called the "base-function".

Iterations

Roughly, for some function and for some constant , the super-function could be defined with expression

then can be interpreted as superfunction of function .
Such definition is valid only for positive integer .
In particular, .
The most research and applications around the superfunctions are related with various extensions of super-function: analysis of the existence, uniqueness and ways of the evaluation.
For some functions , such as addition of a constant or multiplication by a constant,
the superfunction can be expressed in terms of elementary function.
Namely such examples were motivation of this message.

History and Lowstory

Analysis of superfunctions cames from the application to the evaluation of fractional iterations of functions. Super-functions and their inverse functions allow evaluation of not only minus-first power of a function (inverse function), but also any real and even complex iteration of the function.

Historically, the first function of such kind considered was ; then, function was used as logo of the Physics department of the Moscow State University, see
http://zhurnal.lib.ru/img/g/garik/dubinu...ndex.shtml
http://ofvp.phys.msu.ru/pdf/Kandidov_70.pdf
http://nauka.relis.ru/11/0412/11412002.htm
(bitte, all 3 in Russian).
That time, researchers did not have computational facilities for evaluation of such functions, but
the was more lucky than the ; at least the existence of <b>holomorphic function</b>
such that has been reported in 1950 by <b>Helmuth Kneser</b>
(H.Kneser. “Reelle analytische L¨osungen der Gleichung und verwandter Funktionalgleichungen”.
Journal fur die reine und angewandte Mathematik, 187 (1950), 56-67.)

Extensions

The recurrence above can be written as equations

.
Instead of the last equation, one could write

and extend the range of definition of superfunction to the non-negative integers. Then, one may postulate

and extend the range of validity to the integer values larger than .
The following extension, for example,

is not trivial, because the inverse function may happen to be not defined for some values of .
In particular, [[tetration]] can be interpreted as super-function of exponential for some real base ; in this case,

then, at ,
.
but
.

For extension to non-integer values of the argument, superfunction should be defined in different way.

Definitions.

For connected domains and and ,
the super-function of a transfer function
is function , holomorphic on , such that
and .

If ,
then the super-function of a transfer function is called super-exponential on the base .

If and ,
then such a super-exponential is called <b>tetration</b>
and justify the appearance of this post at this Forum.

As it was already mentioned in this forum, in general, the super-function is not unique.
For a given transfer function , from given super-funciton , another super-function could be constructed as

where is any 1-periodic function, holomorphic at least in some vicinity of the real axis, such that .

The modified super-function may have narrowed range of holomorphism.
The challenging task is to specify some domain such that
super-function is unique.

In particular, the super-function of
, for , is called [[tetration]] and is believed to be unique at least for
; for the case

Examples

Oh, en fin, I touch the goal of this post. Sorry for the long introduction above.
Below, I consider various simple base-functions .

<b>Elementary increment</b> Let .
Then, the identity function such that
is superfunction of .

Addition

Chose a and define function such that


Define function such that
.

Then, function is
superfunction of .

<b>Multiplication</b>
Exponential is
super-function of function , defined in the previous example.

Quadratic polynomial

Let .
Those, who like some Quantum Mechanics, may treat this function as a scaled second Hermitian polynomial, justifying the letter, used to denote the transfer function.
Then, is a
superfunction of .

Indeed,
and

In this case, the superfunction is periodic; its period
.
Such super-function approaches unity in the negative direction of the real axis,


The example above and the two examples below are suggested at
<ref name="mueller">Mueller. Problems in Mathematics.
http://www.math.tu-berlin.de/~mueller/projects.html
</ref>

Rational function. In general, the transfer function has no need to be entire function. Here is the example with meromorphic function .

Let




Tthen, is superfunction of .

For the proof, the trigonometric formula

can be used at , that gives

Algebraic transfer function. However, the transfer function has no need to be even meromorphic. Let




Then, superfunction of for
.

The proof is similar to the previous two cases.

Exponential transfer function. Let ,
,
.
Then, tetrational
is a super-function of .

more extensions.

In general, we may take any special function , such that can be expressed through with holomorphic elementary functions, then we may declare this expression as transfer function , and then, function appears as super-function. I invite participants to construct more super-functions that can be easy represented through some already known special functions.

P.S. Oh, mein Gott! I just realized the correct tread for this post. It repeats a lot of staff already posted here... Sorry... I see, there are already replies, so, I ssto to edit; the only correct obvious misprints...
Reply
#16
(05/11/2009, 05:17 PM)Ansus Wrote: It should be noted that superfunction is not unique in most cases. For example, for
, superfunction is

Ya, this is the simple kind of non-uniqueness, its just a translation along the x-axis.
However there are also more severe types of non-uniques, as I already introduced in my first post, we have two solutions (which are not translations of each other):
and .
Reply
#17
(05/11/2009, 08:09 PM)Ansus Wrote: And also as we had seen, for 1/x there are also two different solutions. It is an open question thus how much independent superfunctions has a given function.

Its not an open question, there are infinitely many (even for real-analytic solutions which does not have).
If you have one solution just take any 1-periodic function and then is another solution. Even elementary if is elementary (say linear combination of some ).

Thatswhy I always try to find for elementary solutions whether they are regular at some fixed point because this reduces the number of real analytic solutions to two at one fixed point (analogously to ) up to x-translation.
Reply
#18
(05/11/2009, 08:37 PM)Ansus Wrote: count all solutions that differ only by periodic term as one solution.

Then we have only one strictly increasing solution.
If F and G are two super-functions of f then
for .
Reply
#19
(05/11/2009, 07:39 PM)bo198214 Wrote:
(05/11/2009, 05:17 PM)Ansus Wrote: It should be noted that superfunction is not unique in most cases. For example, for
, superfunction is

Ya, this is the simple kind of non-uniqueness, its just a translation along the x-axis.
However there are also more severe types of non-uniques, as I already introduced in my first post, we have two solutions (which are not translations of each other):
and .

Actually, , so they are translations of each other, albeit along the imaginary axis instead of the real axis.
Reply
#20
(05/11/2009, 08:19 PM)bo198214 Wrote: Thatswhy I always try to find for elementary solutions whether they are regular at some fixed point because this reduces the number of real analytic solutions to two at one fixed point (analogously to ) up to x-translation.

I want to illustrate this phenomenon with a picture of the two regular super-functions and of at the fixed point 1.
   
The upper curve is and the lower curve is .
We see that they have both same asymptote to the left, which is the fixed point 1.

Compare this with the both super-exponentials at 4 (these are and ) in the picture in this post.

This is a general behaviour of the two real regular super-functions at one fixed point: Either to the left or to the right (depending whether the derivative at the fixed point is bigger or smaller than 1) they both approach the fixed point, one from above the other from below.
Reply


Possibly Related Threads...
Thread Author Replies Views Last Post
  I need somebody to help me clarifiy the elementary knowledge for tetration Ember Edison 13 1,785 08/26/2019, 01:44 PM
Last Post: Ember Edison
  Between exp^[h] and elementary growth tommy1729 0 1,071 09/04/2017, 11:12 PM
Last Post: tommy1729
  Superfunctions in continu sum equations tommy1729 0 1,901 01/03/2013, 12:02 AM
Last Post: tommy1729
  superfunctions of eta converge towards each other sheldonison 13 15,163 12/05/2012, 12:22 AM
Last Post: sheldonison
  how many superfunctions? [was superfunctions of eta converge towards each other] tommy1729 8 9,034 05/31/2011, 07:38 PM
Last Post: sheldonison
  Elliptic Superfunctions BenStandeven 2 3,821 08/20/2010, 11:56 AM
Last Post: bo198214



Users browsing this thread: 1 Guest(s)