Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Comparing the Known Tetration Solutions
#8
andydude Wrote:I just wanted to clarify that my super-logarithm solution only works for even though my pdf says . I think that the reason for this is that tetration for bases between 1 and has an upper limit (due to the convergence of ), and thus the super-logarithm has a limited domain over which it is defined.
Are you sure, what goes wrong for bases ?
I mean it is clear that the domain of the superlog is bounded above by the lower fixed point of , which I will call and which is .
So is allowed only for because .
What goes wrong for those arguments with your superlog?
Reply


Messages In This Thread
RE: computing the iterated exp(x)-1 - by andydude - 08/17/2007, 11:20 PM
RE: computing the iterated exp(x)-1 - by jaydfox - 08/17/2007, 11:38 PM
RE: computing the iterated exp(x)-1 - by bo198214 - 08/17/2007, 11:45 PM
RE: computing the iterated exp(x)-1 - by jaydfox - 08/18/2007, 12:19 AM
RE: computing the iterated exp(x)-1 - by bo198214 - 08/18/2007, 08:19 AM
RE: computing the iterated exp(x)-1 - by andydude - 08/18/2007, 09:35 AM
RE: computing the iterated exp(x)-1 - by bo198214 - 08/18/2007, 11:59 AM
RE: computing the iterated exp(x)-1 - by jaydfox - 08/18/2007, 03:49 PM
RE: computing the iterated exp(x)-1 - by jaydfox - 08/19/2007, 12:50 AM

Possibly Related Threads...
Thread Author Replies Views Last Post
  Solutions to f ' (x) = f(f(x)) ? tommy1729 1 2,157 08/12/2013, 12:10 AM
Last Post: tommy1729
  Imaginary zeros of f(z)= z^(1/z) (real valued solutions f(z)>e^(1/e)) Gottfried 91 85,643 03/03/2011, 03:16 PM
Last Post: Gottfried
  Infinite towers & solutions to Lambert W-function brangelito 1 3,610 06/16/2010, 02:50 PM
Last Post: bo198214



Users browsing this thread: 1 Guest(s)