Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Comparing the Known Tetration Solutions
#10
The iterated exp(x)-1 seems to work nicely. It takes a minute or two to generate all the helper functions for a 35-term power series, but then I'm able to calculate 505 points for the interval [-248/128, 256/128], step size 1/128, in just over 59 seconds. This was sufficient to produce the following graph of in 1 minute:

   

By the way, I'm using a radius of 0.005, 35 terms. I could take the number of terms out to 50 pretty easily, and still get increased precision with each new term. As it is, precision seems to be about 65-70 decimal digits.

By the way, sorry for the extremely generic appearance of the graph. This was my first attempt at plotting in SAGE, so I haven't tried changing the tick spacings on the axes, adding gridlines and labels, etc. I also plan to add graphs of the derivatives (approximated with secants).
~ Jay Daniel Fox
Reply


Messages In This Thread
RE: computing the iterated exp(x)-1 - by andydude - 08/17/2007, 11:20 PM
RE: computing the iterated exp(x)-1 - by jaydfox - 08/17/2007, 11:38 PM
RE: computing the iterated exp(x)-1 - by bo198214 - 08/17/2007, 11:45 PM
RE: computing the iterated exp(x)-1 - by jaydfox - 08/18/2007, 12:19 AM
RE: computing the iterated exp(x)-1 - by bo198214 - 08/18/2007, 08:19 AM
RE: computing the iterated exp(x)-1 - by andydude - 08/18/2007, 09:35 AM
RE: computing the iterated exp(x)-1 - by bo198214 - 08/18/2007, 11:59 AM
RE: computing the iterated exp(x)-1 - by jaydfox - 08/18/2007, 03:49 PM
RE: computing the iterated exp(x)-1 - by jaydfox - 08/19/2007, 12:50 AM

Possibly Related Threads...
Thread Author Replies Views Last Post
  Solutions to f ' (x) = f(f(x)) ? tommy1729 1 2,073 08/12/2013, 12:10 AM
Last Post: tommy1729
  Imaginary zeros of f(z)= z^(1/z) (real valued solutions f(z)>e^(1/e)) Gottfried 91 83,575 03/03/2011, 03:16 PM
Last Post: Gottfried
  Infinite towers & solutions to Lambert W-function brangelito 1 3,513 06/16/2010, 02:50 PM
Last Post: bo198214



Users browsing this thread: 1 Guest(s)