Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Mittag-Leffler series for generating continuum sum?
#20
So I had a look at
E. Borel: Leçons sur les séries divergentes (1901)
In chapter V, page 156 he explains the Mittag-Leffler expansion.
Mostly I fighted my way through the text with an online translator.
I found the following interesting formulas, where is the function we search the expansion of:


for ,
Reply


Messages In This Thread
RE: Mittag-Leffler series for generating continuum sum? - by bo198214 - 12/11/2009, 11:16 AM

Possibly Related Threads...
Thread Author Replies Views Last Post
Question Taylor series of i[x] Xorter 12 10,287 02/20/2018, 09:55 PM
Last Post: Xorter
  Recursive formula generating bounded hyper-operators JmsNxn 0 1,333 01/17/2017, 05:10 AM
Last Post: JmsNxn
  Taylor series of cheta Xorter 13 10,972 08/28/2016, 08:52 PM
Last Post: sheldonison
  2015 Continuum sum conjecture tommy1729 3 3,077 05/26/2015, 12:24 PM
Last Post: tommy1729
  Another way to continuum sum! JmsNxn 6 6,024 06/06/2014, 05:09 PM
Last Post: MphLee
  [integral] How to integrate a fourier series ? tommy1729 1 2,310 05/04/2014, 03:19 PM
Last Post: tommy1729
  Continuum sum = Continuum product tommy1729 1 2,429 08/22/2013, 04:01 PM
Last Post: JmsNxn
  applying continuum sum to interpolate any sequence. JmsNxn 1 2,655 08/18/2013, 08:55 PM
Last Post: tommy1729
  Powerful way to perform continuum sum JmsNxn 7 7,384 08/12/2013, 07:17 PM
Last Post: JmsNxn
  Iteration series: Series of powertowers - "T- geometric series" Gottfried 10 15,673 02/04/2012, 05:02 AM
Last Post: Kouznetsov



Users browsing this thread: 1 Guest(s)