Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Tetration FAQ Discussion
#25
Code:
-- What is a fixpoint?

We use the iteration-paradigm:
a is a fixpoint if (<op>,b,a)°h = a  for all h

Examples:

  --- iterated addition ----------------------------------------------------
  (+,b,a)°h = a      no fixpoints a, except for base b=0

       a + 0 + 0 + ... + 0 = a

  polynomial expression:
    f_b(x)   = b + x
    f_b°h(a) = b*h + a   ==> if b=0 then any a is a fixpoint
      [for extension to the ring of powerseries see matrix-approach]
  
  
  
--- iterated multiplication ----------------------------------------------------
(*,b,a)°h = a      a = 0          for all bases b
                    a = arbitrary  for base b=1
                    
       0 * b * b * ... * b = 0
       a * 1 * 1 * ... * 1 = a

  polynomial expression:
    f_b(x)   = 0 + b*x
    f_b°h(a) = a*b^h    ==> if b=1      then  any a is a fixpoint
                        ==> for other b then  a=0   is a fixpoint
      [for extension to the ring of powerseries see matrix-approach]


--- iterated exponentiation ----------------------------------------------------
(^,b,a)°h = a      b = a^(1/a)    for all a<>0
                                   multiple a for the same b
                                  
       b^a = (a^(1/a))^a = a^1 = a
      
  Series expression:
    f_b(x)  = 1 + log(b)*x + log(b)^2*x^2/2! + ...
    f_b°h(a)     ==> if log(b) = log(a)/a   then  a is a fixpoint

    using b=a^(1/a) :
    f_b(a) = 1 + log(a)*(a/a) + log(a)^2*(a/a)^2/2! + ...
               = exp(log(a))
               = a
      [see also: matrix-approach]

       [see also: <literature>]

--- iterated decremented exponentiation ----------------------------------------
  (dxp,b,a)°h = a   a = 0   for all bases b
                    a = <multiple values>   for all bases b
                    
       b^0 - 1 = 0
      
       [see also: <literature>]
      
--------------------------------------------------------------------------------

The aspect of fixpoints is an important tool for adapting
powerseries with constant term to enable fractional iterations.
[see fixpoint-shift]

===================================================================================

-- What is a "repelling"/"attracting" fixpoint?

   For an iterable function f(x) the fixpoint is given (if it exists)
   by
      f°h(a) = a
   for any h.
   If a is unknown, then we may try to *find* it simply by iteration,
   beginning with a suitable init-value a0:
              a0
     f(a0)  = a1
     f(a1)  = a2 = f°2(a0)
     f(a2)  = a3 = f°3(a0)
        ...
   If this converges to a fixed value a, then we have
     f(a)   = a  = f°inf(a0)

   and a is an attracting fixpoint.

   For instance, Euler showed, that - using b=sqrt(2) and f(x) = b^x - the sequence
    b^1, b^b^1,... or
    f°1(1),f°2(1),f°3(1),...
    converges to 2 so that
     f(2) = 2
   Since the fixpoint could be find by iteration with a different initial
   value, a=2 is an attracting fixpoint of f(x)
  
  
   But he also discussed, that another fixpoint is a=4, such that f(4) = 4.
   However, this fixpoint cannot be found by iteration from another
   initial value; if the difference delta from delta = 4 - a0 greater than
   zero, the iteration leads to increasing delta - the iteration either
   converges to a=2 (the attractin fixpoint) or diverges.
  
   So in this case, a=4 is called a "repelling" fixpoint.

   In general,
    if |f'(a)| < 1  then a is an attracting fixpoint
    if |f'(a)| > 1  then a is a  repelling fixpoint

===================================================================================
Gottfried Helms, Kassel
Reply


Messages In This Thread
Tetration FAQ Discussion - by bo198214 - 08/09/2007, 12:07 AM
Literature - by Gottfried - 11/23/2007, 04:30 PM
RE: Literature - by andydude - 12/17/2007, 07:31 PM
RE: Tetration FAQ - by andydude - 01/13/2008, 08:43 AM
RE: Tetration FAQ - by Ivars - 01/13/2008, 10:17 AM
RE: Tetration FAQ - by GFR - 01/13/2008, 04:02 PM
RE: Tetration FAQ - by andydude - 01/16/2008, 04:13 AM
RE: Tetration FAQ Discussion - by Gottfried - 07/17/2008, 10:34 AM
FAQ-discuss: What is a fixpoint? - by Gottfried - 07/17/2008, 10:45 AM
FAQ-discuss: What does f o g mean? - by Gottfried - 07/17/2008, 10:47 AM
Intro and Formula sheet - by andydude - 11/13/2007, 01:21 AM
RE: Intro and Formula sheet - by jaydfox - 11/13/2007, 02:39 AM
RE: Intro and Formula sheet - by andydude - 11/13/2007, 03:15 AM
RE: Intro and Formula sheet - by andydude - 11/13/2007, 03:25 AM
RE: Intro and Formula sheet - by Gottfried - 11/13/2007, 06:08 AM
RE: Intro and Formula sheet - by Gottfried - 11/13/2007, 06:12 AM
RE: Intro and Formula sheet - by andydude - 11/13/2007, 08:37 AM
RE: Intro and Formula sheet - by andydude - 11/13/2007, 09:09 AM
RE: Intro and Formula sheet - by bo198214 - 11/13/2007, 10:42 AM
RE: Intro and Formula sheet - by andydude - 11/15/2007, 03:16 AM
RE: Intro and Formula sheet - by jaydfox - 11/15/2007, 03:38 AM
RE: Intro and Formula sheet - by andydude - 11/30/2007, 05:32 PM
[split] Tetration FAQ - by Ivars - 07/11/2008, 06:28 AM

Possibly Related Threads...
Thread Author Replies Views Last Post
  Fixpoints of the dxp() - has there been discussion about it? Gottfried 0 2,043 11/10/2011, 08:29 PM
Last Post: Gottfried
  Discussion of TPID 6 JJacquelin 3 5,934 10/24/2010, 07:44 AM
Last Post: bo198214
  A related discussion on interpolation: factorial and gamma-function Gottfried 6 9,905 06/27/2008, 06:38 PM
Last Post: Gottfried
  open problems / Discussion Gottfried 8 8,757 06/26/2008, 07:20 PM
Last Post: bo198214



Users browsing this thread: 1 Guest(s)