• 0 Vote(s) - 0 Average
• 1
• 2
• 3
• 4
• 5
 closed form for regular superfunction expressed as a periodic function mike3 Long Time Fellow Posts: 368 Threads: 44 Joined: Sep 2009 08/31/2010, 10:19 PM (This post was last modified: 08/31/2010, 10:24 PM by mike3.) (08/31/2010, 08:04 AM)mike3 Wrote: Doing some tests, it appears that $B_n(1, 2! a_2, ..., n! a_n)$ has only one occurrence of $n! a_n$, and no higher powers of it, and it never seems to be multiplied by any sort of n-dependent coefficient. This means that $B_n(1, a_2, ..., a_n) - n! a_n = B_n(1, 2! a_2, ..., (n-1)! a_{n-1}, 0)$. I don't have a proof at this point, ... Now I've got that proof. Here it goes: We have $B_{n,k}(x_1, x_2, ..., x_{n-k+1}) = \sum \frac{n!}{j_1! j_2! ... j_{n-k+1}!} \left(\frac{x_1}{1!}\right)^{j_1} \left(\frac{x_2}{2!}\right)^{j_2} ... \left(\frac{x_{n-k+1}}{(n-k+1)!}\right)^{j_{n-k+1}}$ (note how the connection to the Faà di Bruno's formula is clear) with the sum taken over all sequences of non-negative integers $j$ such that $j_1 + j_2 + ... + j_{n-k+1} = k$ and $j_1 + 2j_2 + ... + (n-k+1)j_{n-k+1} = n$, and $B_n$ is the sum of the $B_{n, k}$. As should be obvious from the formula, we see that the value $x_n$ in $B_n$ only occurs in the component $B_{n, 1}$. What kind of occurrences of $x_n$ are possible there? Using the formulas for the $j$, we see that $j_1 + j_2 + ... + j_n = 1$, which means that all but one $j_i$ must be zero, and that one that is must be 1. The second constraint, $j_1 + 2j_2 + ... + nj_n = n$, would imply that if all $j_i$ but one are zero, the nonzero one must equal $\frac{n}{m}$ where $m$ is its position in the sequence. This would mean $m$ must divide $n$. The first constraint, though, said it must be 1, which means $m = n$ and so the only possible sequence of $j$ is $0, 0, ..., 1$ ($n$ terms). This means $B_{n, 1}(x_1, x_2, ..., x_n) = \frac{n!}{0!0!...1!} \left(\frac{x_1}{1!}\right)^0 \left(\frac{x_2}{2!}\right)^0 ... \left(\frac{x_n}{n!}\right)^1$, which is obviously just $x_n$. So $B_n(x_1, x_2, ..., x_n)$ contains only one term with $x_n$, which is just $x_n$ itself. And then $B_n(x_1, x_2, ..., x_n) - x_n = B_n(x_1, x_2, ..., x_{n-1}, 0)$ follows trivially. mike3 Long Time Fellow Posts: 368 Threads: 44 Joined: Sep 2009 08/31/2010, 10:23 PM (08/31/2010, 08:33 PM)sheldonison Wrote: I'm kind of intrigued at actually having a closed form for a real valued superfunction, like sqrt(2). I'm guessing that the number of terms required for convergence gets extremely large as z increases. From the terms I computed a couple of days ago, it looks like the terms are decreasing exponentially, which means the series acts like it has a singularity. However, since the regular superfunction is entire, we must have convergence to infinity, so the terms must eventually decrease faster than exponentially. - SheldonOr it does already, but just a wee bit faster than exponential. This makes me wonder about an interesting place for mathematical exploration: the behavior of entire functions given by a Taylor series whose terms' coefficients decay just a "wee" bit faster than exponential. As this example shows, such functions can have extremely complicated behavior (note the complicated "fractal structure" of the graphs of these superfunctions.). sheldonison Long Time Fellow Posts: 684 Threads: 24 Joined: Oct 2008 09/03/2010, 01:00 PM (This post was last modified: 09/03/2010, 06:14 PM by sheldonison.) Quote:Or it does already, but just a wee bit faster than exponential. This makes me wonder about an interesting place for mathematical exploration: the behavior of entire functions given by a Taylor series whose terms' coefficients decay just a "wee" bit faster than exponential. As this example shows, such functions can have extremely complicated behavior (note the complicated "fractal structure" of the graphs of these superfunctions.). Yes, very interesting. I notice that the fractals are often very sparse too. Its only growing super-exponentially on a filagree, and most of the rest of the function is not growing nearly as fast. So it looks like spike singularities. Not sure if that helps any. I think I may have also figured out the closed forms for the abel functions, the inverse superexponential developed from the fixed point, which I'll eventually post, when I have time to verify the equations. Now I'm stuck on eta, $\eta=e^{(1/e)}$. I'm trying the substitution y=1/z. I think my results so far are bogus though, so I'm editing them out. -Sheldon tommy1729 Ultimate Fellow Posts: 1,676 Threads: 368 Joined: Feb 2009 09/03/2010, 08:19 PM i think you will be stuck on most parabolic fixpoints with this method. sheldonison Long Time Fellow Posts: 684 Threads: 24 Joined: Oct 2008 09/05/2010, 05:36 AM (09/03/2010, 08:19 PM)tommy1729 Wrote: i think you will be stuck on most parabolic fixpoints with this method.Right now, I'm only interested in the parabolic fixed point for $\eta$ (not the general parabolic question), but its definately a challenge. There are a number of posts on $\eta$ on this forum, which together with the limiting behavior, e-2e/z, and my own experiments, leave me somewhat confused. - Sheldon http://math.eretrandre.org/tetrationforu...php?tid=13 http://math.eretrandre.org/tetrationforu...php?tid=10 http://math.eretrandre.org/tetrationforu....php?tid=8 http://math.eretrandre.org/tetrationforu...hp?tid=316 http://math.eretrandre.org/tetrationforu...hp?tid=498 tommy1729 Ultimate Fellow Posts: 1,676 Threads: 368 Joined: Feb 2009 09/05/2010, 04:45 PM dear sheldon , i think you are confused because exp(x) - 1 doesnt have a holomorphic half-iterate. regards tommy1729 sheldonison Long Time Fellow Posts: 684 Threads: 24 Joined: Oct 2008 09/07/2010, 03:54 PM (09/05/2010, 04:45 PM)tommy1729 Wrote: dear sheldon , i think you are confused because exp(x) - 1 doesnt have a holomorphic half-iterate. regards tommy1729I think I'll need to get Peter Walker's paper, Proc. AMS 1990. He proved that the upper superfunction of exp(x)-1 is entire, which corresponds to the upper superfunction of $\eta$. I would be interested in knowing how that was done. My understanding is that there is a analytic half-iterate of exp(x)-1, but it isn't entire. - Sheldon tommy1729 Ultimate Fellow Posts: 1,676 Threads: 368 Joined: Feb 2009 09/07/2010, 07:46 PM it only has a formal powerseries that converges at the integers but has radius 0 hence not analytic. bo198214 Administrator Posts: 1,540 Threads: 97 Joined: Aug 2007 09/08/2010, 06:03 AM (This post was last modified: 09/08/2010, 09:47 AM by bo198214.) (09/07/2010, 07:46 PM)tommy1729 Wrote: it only has a formal powerseries that converges at the integers but has radius 0 hence not analytic. Ya but it is analytic outside the fixed point. There is one half-iterate to the right of the fixed point and one to the left, which are different functions, i.e. no analytic continuations of each other. Both iterates have the asymptotic power series expansion at the fixed point that one gets when calculating the *formal* powerseries (which has 0 convergence radius). tommy1729 Ultimate Fellow Posts: 1,676 Threads: 368 Joined: Feb 2009 09/08/2010, 06:55 PM (This post was last modified: 09/08/2010, 07:10 PM by tommy1729.) thus it is complex continuous ?? ive been thinking that entire functions with parabolic fixpoints with n somewhere analytic solutions for their half-iterate are half-iterates of another related function that has exactly n non-parabolic fixpoints an no other fixpoints or exactly n parabolic fixpoints with analytic solutions at their fixpoints and no other fixpoints. as the relationship between eta^x and e^x - 1. that would make parabolic fixpoints more logical imho ... tommy1729 « Next Oldest | Next Newest »

 Possibly Related Threads… Thread Author Replies Views Last Post Fibonacci as iteration of fractional linear function bo198214 47 655 08/17/2022, 11:09 PM Last Post: tommy1729 Constructing an analytic repelling Abel function JmsNxn 0 108 07/11/2022, 10:30 PM Last Post: JmsNxn A related discussion on interpolation: factorial and gamma-function Gottfried 9 17,767 07/10/2022, 06:23 AM Last Post: Gottfried Closed Forms for non Integer Tetration Catullus 1 116 07/08/2022, 11:32 AM Last Post: JmsNxn Some "Theorem" on the generalized superfunction Leo.W 48 16,343 06/18/2022, 08:39 AM Last Post: Leo.W On the $$2 \pi i$$-periodic solution to tetration, base e JmsNxn 0 680 09/28/2021, 05:44 AM Last Post: JmsNxn A compilation of graphs for the periodic real valued tetrations JmsNxn 1 925 09/09/2021, 04:37 AM Last Post: JmsNxn Generalized Kneser superfunction trick (the iterated limit definition) MphLee 25 12,044 05/26/2021, 11:55 PM Last Post: MphLee A Holomorphic Function Asymptotic to Tetration JmsNxn 2 1,805 03/24/2021, 09:58 PM Last Post: JmsNxn Nixon-Banach-Lambert-Raes tetration is analytic , simple and “ closed form “ !! tommy1729 11 5,746 02/04/2021, 03:47 AM Last Post: JmsNxn

Users browsing this thread: 2 Guest(s)