Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
A kind of slog ? C + SUM f_n(x) ln^[n](x) ?
#1
I was thinking about C + f_1(x) ln(x) + f_2(x) ln^[2](x) + f_3(x) In^[3](x) + ...

This should make a kind of slog. Or the similar : abel function for 2sinh(x).
Similar question for C + f_1(x) arc2sinh(x) + f_2(x) arc2sinh^[2](x) + ...

Regards

tommy1729
Reply
#2
For instance f_n(x) could be a gauss-like erf function with tops at sexp(n).

regards

tommy1729
Reply


Possibly Related Threads...
Thread Author Replies Views Last Post
  [MSE] Help on a special kind of functional equation. MphLee 4 976 06/14/2021, 09:52 PM
Last Post: JmsNxn
  A support for Andy's (P.Walker's) slog-matrix-method Gottfried 4 4,805 03/08/2021, 07:13 PM
Last Post: JmsNxn
  Some slog stuff tommy1729 15 24,074 05/14/2015, 09:25 PM
Last Post: tommy1729
  A limit exercise with Ei and slog. tommy1729 0 3,403 09/09/2014, 08:00 PM
Last Post: tommy1729
  A system of functional equations for slog(x) ? tommy1729 3 8,131 07/28/2014, 09:16 PM
Last Post: tommy1729
  slog(superfactorial(x)) = ? tommy1729 3 8,207 06/02/2014, 11:29 PM
Last Post: tommy1729
  [stuck] On the functional equation of the slog : slog(e^z) = slog(z)+1 tommy1729 1 4,548 04/28/2014, 09:23 PM
Last Post: tommy1729
  A simple yet unsolved equation for slog(z) ? tommy1729 0 3,196 04/27/2014, 08:02 PM
Last Post: tommy1729
  tetration base conversion, and sexp/slog limit equations sheldonison 44 93,248 02/27/2013, 07:05 PM
Last Post: sheldonison
  Does anyone have taylor series approximations for tetration and slog base e^(1/e)? JmsNxn 18 32,959 06/05/2011, 08:47 PM
Last Post: sheldonison



Users browsing this thread: 1 Guest(s)