Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
[Update] Comparision of 5 methods of interpolation to continuous tetration
(10/29/2013, 01:11 PM)tommy1729 Wrote: I simply asked if I am correct with my 10 step way to do kneser.

I do not ask for the Riemann mapping so I guess its more of a proof question.

But actually I'd say its a " construction " question.

Is the Kneser proof/solution constructed in the 10 steps I posted or is one or more steps wrong ?
Tommy, the sequence is good, but the Riemann mapping step 5) has a lot of sub-steps. For me, the biggest complexity hurdle in Kneser's construction, besides the fact that I don't have a formal math degree, is taking the Abel function, from Schroeder function, of the real axis, which is after the step where he generates the chi-star, but still one or two steps before the Riemann mapping. I don't read German, so have no idea how he proved the infinite region is simply connected, and I wouldn't know how to do so, since the region is increasingly recursively complex.

Here is the rough Abel function of the real axis, showing the repeating pattern; here . Kneser multiplies this repeating pattern by and then takes the exponent of that; . That is the contour that gets wrapped around a unit circle for the Riemann mapping.

Here we zoom in on one of the singularities, where sexp(z)=0. The singularity gets ever more complicated as we super-exponentially approach zero. Here, I show what the contour looks like if .

My algorithm has a mathematical description, as well as pari-gp code. I don't want to side track too much, but it does something different but equivalent to generate , via a 1-cyclic mapping from the inverse Abel function, , as well as an sexp(z) Taylor series representation at the real axis. This is because the function has a singularity at the real axis, so adequate convergence is not possible with a reasonable number of terms. So my algorithm actually has to iteratively generate two different equivalent representations of sexp(z).
- Sheldon

Messages In This Thread
RE: [Update] Comparision of 5 methods of interpolation to continuous tetration - by sheldonison - 10/29/2013, 02:52 PM

Possibly Related Threads…
Thread Author Replies Views Last Post
Question Continuous Hyper Bouncing Factorial Catullus 9 117 08/15/2022, 07:54 AM
Last Post: JmsNxn
  Qs on extension of continuous iterations from analytic functs to non-analytic Leo.W 17 819 08/10/2022, 11:34 PM
Last Post: JmsNxn
  Unifying continuous and discrete physics Daniel 0 39 07/31/2022, 01:26 PM
Last Post: Daniel
  A related discussion on interpolation: factorial and gamma-function Gottfried 9 17,758 07/10/2022, 06:23 AM
Last Post: Gottfried
  Question about tetration methods Daniel 17 699 06/22/2022, 11:27 PM
Last Post: tommy1729
  Small research update MphLee 2 1,104 10/26/2021, 12:22 AM
Last Post: MphLee
  My interpolation method [2020] tommy1729 1 3,244 02/20/2020, 08:40 PM
Last Post: tommy1729
  Possible continuous extension of tetration to the reals Dasedes 0 3,126 10/10/2016, 04:57 AM
Last Post: Dasedes
  Tribonacci interpolation ? tommy1729 0 3,712 09/08/2014, 10:37 AM
Last Post: tommy1729
  How many methods have this property ? tommy1729 1 4,928 05/22/2014, 04:56 PM
Last Post: sheldonison

Users browsing this thread: 1 Guest(s)