Thread Rating:
  • 1 Vote(s) - 5 Average
  • 1
  • 2
  • 3
  • 4
  • 5
The inverse gamma function.
#1
Because of recent events here, I felt the need to talk about the inverse gamma function.

Im talking about the entire approximation of exp^[1/2] and the Taylor coefficients being O ( 1/ Gamma( n (arc2sinh(n) - 1) ) ).

Cleary from the viewpoint of numerical analysis it seems usefull to have a good approximation of the inverse gamma function.
The functional inverse that is.

Now my honesty forces me to quote the source of an intresting approximation of the inverse gamma function :

David W Cantrell

http://mathforum.org/kb/message.jspa?messageID=342552

In case that page gets removed I post the main formula here :

A is the positive zero of the digamma function ( 1.4616... )
B = sqrt(2 pi) / e - Gamma(A). ( 0.0365... )
L(x) = ln( (x+c) / sqrt(2 pi) )
W(x) is the Lambert W function. ( the functional inverse of x exp(x))
Gamma^[-1](x) = approx = 1/2 + L(x)/W(L(x)/e)
The error term goes to 0 as x goes to +oo.

Together with the approximation for the Lambert W :

LambertW(x) = ln(x) - ln(ln(x)) + ln(ln(x)) / ln(x)

this gives a practical way to compute the inverse gamma function.


I think there is also a page by wolfram about the inverse gamma but I cant find it ? ( And no, I dont mean the inverse regularized gamma or the statistical inverse gamma distribution )


I would like to see an integral representation of the inverse gamma function too.


regards

tommy1729
Reply
#2
(05/11/2014, 08:28 PM)tommy1729 Wrote: Because of recent events here, I felt the need to talk about the inverse gamma function.

Im talking about the entire approximation of exp^[1/2] and the Taylor coefficients being O ( 1/ Gamma( n (arc2sinh(n) - 1) ) ).

Cleary from the viewpoint of numerical analysis it seems usefull to have a good approximation of the inverse gamma function.
The functional inverse that is.

Now my honesty forces me to quote the source of an intresting approximation of the inverse gamma function :

David W Cantrell

http://mathforum.org/kb/message.jspa?messageID=342552

In case that page gets removed I post the main formula here :

A is the positive zero of the digamma function ( 1.4616... )
B = sqrt(2 pi) / e - Gamma(A). ( 0.0365... )
L(x) = ln( (x+c) / sqrt(2 pi) )
W(x) is the Lambert W function. ( the functional inverse of x exp(x))
Gamma^[-1](x) = approx = 1/2 + L(x)/W(L(x)/e)
The error term goes to 0 as x goes to +oo.

Together with the approximation for the Lambert W :

LambertW(x) = ln(x) - ln(ln(x)) + ln(ln(x)) / ln(x)

this gives a practical way to compute the inverse gamma function.


I think there is also a page by wolfram about the inverse gamma but I cant find it ? ( And no, I dont mean the inverse regularized gamma or the statistical inverse gamma distribution )


I would like to see an integral representation of the inverse gamma function too.


regards

tommy1729

I always like posting my own results ^_^, for



then by some of my fractional calculus theorems. For and




Is that a good integral expression?
Reply
#3
(05/11/2014, 10:12 PM)JmsNxn Wrote:
(05/11/2014, 08:28 PM)tommy1729 Wrote: Because of recent events here, I felt the need to talk about the inverse gamma function.

Im talking about the entire approximation of exp^[1/2] and the Taylor coefficients being O ( 1/ Gamma( n (arc2sinh(n) - 1) ) ).

Cleary from the viewpoint of numerical analysis it seems usefull to have a good approximation of the inverse gamma function.
The functional inverse that is.

Now my honesty forces me to quote the source of an intresting approximation of the inverse gamma function :

David W Cantrell

http://mathforum.org/kb/message.jspa?messageID=342552

In case that page gets removed I post the main formula here :

A is the positive zero of the digamma function ( 1.4616... )
B = sqrt(2 pi) / e - Gamma(A). ( 0.0365... )
L(x) = ln( (x+c) / sqrt(2 pi) )
W(x) is the Lambert W function. ( the functional inverse of x exp(x))
Gamma^[-1](x) = approx = 1/2 + L(x)/W(L(x)/e)
The error term goes to 0 as x goes to +oo.

Together with the approximation for the Lambert W :

LambertW(x) = ln(x) - ln(ln(x)) + ln(ln(x)) / ln(x)

this gives a practical way to compute the inverse gamma function.


I think there is also a page by wolfram about the inverse gamma but I cant find it ? ( And no, I dont mean the inverse regularized gamma or the statistical inverse gamma distribution )


I would like to see an integral representation of the inverse gamma function too.


regards

tommy1729

I always like posting my own results ^_^, for



then by some of my fractional calculus theorems. For and




Is that a good integral expression?

Dear James.

For starters if you are trying to find the integral I asked for :

1) I asked for the functional inverse of the Gamma function.
Not the reciprocal.
The whole OP was about the functional inverse of the Gamma function.
Although I could have stated that more clearly when I asked about the integral representation ...
2) ... Also defining f(x) By M^[-1] M^[1] f(x) seems a bit lame.
That looks similar to saying x = sqrt(x)^2 or x = exp(ln(x)).
3) despite 1) and 2) why do you wonder if that is OK ? You know the mellin inversion theorem.

Thanks anyway.

Maybe a second attempt.

Im not sure such an integral representation exists btw.


regards

tommy1729
Reply
#4
(05/12/2014, 11:06 PM)tommy1729 Wrote: Dear James.

For starters if you are trying to find the integral I asked for :

1) I asked for the functional inverse of the Gamma function.
Not the reciprocal.
The whole OP was about the functional inverse of the Gamma function.
Although I could have stated that more clearly when I asked about the integral representation ...
2) ... Also defining f(x) By M^[-1] M^[1] f(x) seems a bit lame.
That looks similar to saying x = sqrt(x)^2 or x = exp(ln(x)).
3) despite 1) and 2) why do you wonder if that is OK ? You know the mellin inversion theorem.

Thanks anyway.

Maybe a second attempt.

Im not sure such an integral representation exists btw.


regards

tommy1729

oooooo functional inverse. That's tricky...
Reply


Possibly Related Threads...
Thread Author Replies Views Last Post
  Is there a function space for tetration? Chenjesu 0 192 06/23/2019, 08:24 PM
Last Post: Chenjesu
  Inverse Iteration Xorter 3 1,964 02/05/2019, 09:58 AM
Last Post: MrFrety
  Degamma function Xorter 0 669 10/22/2018, 11:29 AM
Last Post: Xorter
  Inverse super-composition Xorter 11 11,425 05/26/2018, 12:00 AM
Last Post: Xorter
  the inverse ackerman functions JmsNxn 3 5,480 09/18/2016, 11:02 AM
Last Post: Xorter
  Should tetration be a multivalued function? marraco 17 14,917 01/14/2016, 04:24 AM
Last Post: marraco
  Introducing new special function : Lambert_t(z,r) tommy1729 2 3,237 01/10/2016, 06:14 PM
Last Post: tommy1729
  Inverse power tower functions tommy1729 0 1,708 01/04/2016, 12:03 PM
Last Post: tommy1729
  Tommy's Gamma trick ? tommy1729 7 5,596 11/07/2015, 01:02 PM
Last Post: tommy1729
Sad Tommy-Mandelbrot function tommy1729 0 1,777 04/21/2015, 01:02 PM
Last Post: tommy1729



Users browsing this thread: 1 Guest(s)