Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
[2014] Uniqueness of periodic superfunction
#1
Let be a periodic superfunction of a real-entire .

If has no parabolic fixpoints and has exactly pairs of where is a repelling fixpoint and is an attracting fixpoint , then there are at most solutions .

This relates to

http://math.eretrandre.org/tetrationforu...hp?tid=932

and

http://www.ams.org/journals/mcom/2010-79.../home.html

and

http://math.eretrandre.org/tetrationforu...php?tid=89


Regards

tommy1729
Reply


Possibly Related Threads...
Thread Author Replies Views Last Post
  Half-iterates and periodic stuff , my mod method [2019] tommy1729 0 83 09/09/2019, 10:55 PM
Last Post: tommy1729
  A conjectured uniqueness criteria for analytic tetration Vladimir Reshetnikov 13 9,914 02/17/2017, 05:21 AM
Last Post: JmsNxn
  Uniqueness of half-iterate of exp(x) ? tommy1729 14 13,433 01/09/2017, 02:41 AM
Last Post: Gottfried
  Removing the branch points in the base: a uniqueness condition? fivexthethird 0 1,380 03/19/2016, 10:44 AM
Last Post: fivexthethird
  Periodic analytic iterations by Riemann mapping tommy1729 1 1,973 03/05/2016, 10:07 PM
Last Post: tommy1729
  Natural cyclic superfunction tommy1729 3 2,687 12/08/2015, 12:09 AM
Last Post: tommy1729
  Can sexp(z) be periodic ?? tommy1729 2 3,520 01/14/2015, 01:19 PM
Last Post: tommy1729
  [2014] Beyond Gamma and Barnes-G tommy1729 1 2,113 12/28/2014, 05:48 PM
Last Post: MphLee
  [2014] Representations by 2sinh^[0.5] tommy1729 1 2,150 11/16/2014, 07:40 PM
Last Post: tommy1729
  [2014] The angle fractal. tommy1729 1 2,032 10/19/2014, 03:15 PM
Last Post: tommy1729



Users browsing this thread: 1 Guest(s)