[2014] Uniqueness of periodic superfunction
#1
Let be a periodic superfunction of a real-entire .

If has no parabolic fixpoints and has exactly pairs of where is a repelling fixpoint and is an attracting fixpoint , then there are at most solutions .

This relates to

http://math.eretrandre.org/tetrationforu...hp?tid=932

and

http://www.ams.org/journals/mcom/2010-79.../home.html

and

http://math.eretrandre.org/tetrationforu...php?tid=89


Regards

tommy1729
Reply


Possibly Related Threads…
Thread Author Replies Views Last Post
  Some "Theorem" on the generalized superfunction Leo.W 59 19,471 09/18/2022, 11:05 PM
Last Post: tommy1729
  Uniqueness of fractionally iterated functions Daniel 7 732 07/05/2022, 01:21 AM
Last Post: JmsNxn
  Universal uniqueness criterion? bo198214 57 111,939 06/28/2022, 12:00 AM
Last Post: JmsNxn
  A question concerning uniqueness JmsNxn 4 10,003 06/10/2022, 08:45 AM
Last Post: Catullus
  On the [tex]2 \pi i[/tex]-periodic solution to tetration, base e JmsNxn 0 795 09/28/2021, 05:44 AM
Last Post: JmsNxn
  A compilation of graphs for the periodic real valued tetrations JmsNxn 1 1,043 09/09/2021, 04:37 AM
Last Post: JmsNxn
  Generalized Kneser superfunction trick (the iterated limit definition) MphLee 25 13,014 05/26/2021, 11:55 PM
Last Post: MphLee
  [Exercise] A deal of Uniqueness-critrion:Gamma-functionas iteration Gottfried 6 7,485 03/19/2021, 01:25 PM
Last Post: tommy1729
  Half-iterates and periodic stuff , my mod method [2019] tommy1729 0 2,669 09/09/2019, 10:55 PM
Last Post: tommy1729
  A conjectured uniqueness criteria for analytic tetration Vladimir Reshetnikov 13 25,706 02/17/2017, 05:21 AM
Last Post: JmsNxn



Users browsing this thread: 1 Guest(s)