Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
[2014] Uniqueness of periodic superfunction
#1
Let be a periodic superfunction of a real-entire .

If has no parabolic fixpoints and has exactly pairs of where is a repelling fixpoint and is an attracting fixpoint , then there are at most solutions .

This relates to

http://math.eretrandre.org/tetrationforu...hp?tid=932

and

http://www.ams.org/journals/mcom/2010-79.../home.html

and

http://math.eretrandre.org/tetrationforu...php?tid=89


Regards

tommy1729
Reply


Possibly Related Threads...
Thread Author Replies Views Last Post
  A conjectured uniqueness criteria for analytic tetration Vladimir Reshetnikov 13 9,112 02/17/2017, 05:21 AM
Last Post: JmsNxn
  Uniqueness of half-iterate of exp(x) ? tommy1729 14 12,385 01/09/2017, 02:41 AM
Last Post: Gottfried
  Removing the branch points in the base: a uniqueness condition? fivexthethird 0 1,262 03/19/2016, 10:44 AM
Last Post: fivexthethird
  Periodic analytic iterations by Riemann mapping tommy1729 1 1,810 03/05/2016, 10:07 PM
Last Post: tommy1729
  Natural cyclic superfunction tommy1729 3 2,467 12/08/2015, 12:09 AM
Last Post: tommy1729
  Can sexp(z) be periodic ?? tommy1729 2 3,306 01/14/2015, 01:19 PM
Last Post: tommy1729
  [2014] Beyond Gamma and Barnes-G tommy1729 1 1,957 12/28/2014, 05:48 PM
Last Post: MphLee
  [2014] Representations by 2sinh^[0.5] tommy1729 1 2,018 11/16/2014, 07:40 PM
Last Post: tommy1729
  [2014] The angle fractal. tommy1729 1 1,902 10/19/2014, 03:15 PM
Last Post: tommy1729
  [2014] " statistical dynamics " tommy1729 0 1,471 08/31/2014, 11:53 PM
Last Post: tommy1729



Users browsing this thread: 1 Guest(s)