[2014] Uniqueness of periodic superfunction tommy1729 Ultimate Fellow Posts: 1,703 Threads: 374 Joined: Feb 2009 11/09/2014, 10:20 PM (This post was last modified: 11/09/2014, 10:22 PM by tommy1729.) Let $F(z)$ be a periodic superfunction of a real-entire $f(z)$. If $f(z)$ has no parabolic fixpoints and $f(z)$ has exactly $n$ pairs of $(z_i,z_j)$ where $z_i$ is a repelling fixpoint and $z_j$ is an attracting fixpoint , then there are at most $n$ solutions $F(z)$. This relates to http://math.eretrandre.org/tetrationforu...hp?tid=932 and http://www.ams.org/journals/mcom/2010-79.../home.html and http://math.eretrandre.org/tetrationforu...php?tid=89 Regards tommy1729 « Next Oldest | Next Newest »

 Possibly Related Threads… Thread Author Replies Views Last Post Some "Theorem" on the generalized superfunction Leo.W 59 19,471 09/18/2022, 11:05 PM Last Post: tommy1729 Uniqueness of fractionally iterated functions Daniel 7 732 07/05/2022, 01:21 AM Last Post: JmsNxn Universal uniqueness criterion? bo198214 57 111,939 06/28/2022, 12:00 AM Last Post: JmsNxn A question concerning uniqueness JmsNxn 4 10,003 06/10/2022, 08:45 AM Last Post: Catullus On the $$2 \pi i$$-periodic solution to tetration, base e JmsNxn 0 795 09/28/2021, 05:44 AM Last Post: JmsNxn A compilation of graphs for the periodic real valued tetrations JmsNxn 1 1,043 09/09/2021, 04:37 AM Last Post: JmsNxn Generalized Kneser superfunction trick (the iterated limit definition) MphLee 25 13,014 05/26/2021, 11:55 PM Last Post: MphLee [Exercise] A deal of Uniqueness-critrion:Gamma-functionas iteration Gottfried 6 7,485 03/19/2021, 01:25 PM Last Post: tommy1729 Half-iterates and periodic stuff , my mod method [2019] tommy1729 0 2,669 09/09/2019, 10:55 PM Last Post: tommy1729 A conjectured uniqueness criteria for analytic tetration Vladimir Reshetnikov 13 25,706 02/17/2017, 05:21 AM Last Post: JmsNxn

Users browsing this thread: 1 Guest(s)