Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Conjecture on semi-exp base change [2015]
#1
Let x,y > 0.
Let B>b>2.

Expb is exp base b and expB is exp base B.
Analogue for ln.
Conjecture :

A(x,y) = expB^[1/2](lnB^[1/2](x) + lnB^[1/2](y))
B(x,y) = expb^[1/2](lnb^[1/2](x) + lnb^[1/2](y))
C(x,y) = (2+x^2+y^2)^(B-b)

A(x,y)/( B(x,y) ln(2+C(x,y)) ) < 2

Regards

Tommy1729
Reply


Possibly Related Threads…
Thread Author Replies Views Last Post
  semi-group homomorphism and tommy's U-tetration tommy1729 5 95 08/12/2022, 08:14 PM
Last Post: tommy1729
  Base -1 marraco 15 17,997 07/06/2022, 09:37 AM
Last Post: Catullus
  tommy's new conjecture/theorem/idea (2022) ?? tommy1729 0 126 06/22/2022, 11:49 PM
Last Post: tommy1729
  I thought I'd take a crack at base = 1/2 JmsNxn 9 1,954 06/20/2022, 08:28 AM
Last Post: Catullus
  conjecture 666 : exp^[x](0+si) tommy1729 2 1,289 05/17/2021, 11:17 PM
Last Post: tommy1729
  A different approach to the base-change method JmsNxn 0 1,138 03/17/2021, 11:15 PM
Last Post: JmsNxn
  Complex Tetration, to base exp(1/e) Ember Edison 7 11,803 08/14/2019, 09:15 AM
Last Post: sheldonison
  b^b^x with base 0<b<e^-e have three real fixpoints Gottfried 1 5,651 11/07/2017, 11:06 AM
Last Post: sheldonison
  Semi-exp and the geometric derivative. A criterion. tommy1729 0 3,301 09/19/2017, 09:45 PM
Last Post: tommy1729
  @Gottfried : answer to your conjecture on MSE. tommy1729 2 6,396 02/05/2017, 09:38 PM
Last Post: Gottfried



Users browsing this thread: 1 Guest(s)