• 1 Vote(s) - 2 Average
• 1
• 2
• 3
• 4
• 5
 Tommy-Mandelbrot function tommy1729 Ultimate Fellow Posts: 1,372 Threads: 336 Joined: Feb 2009   04/21/2015, 01:02 PM Let a(x) = x^2 +1 Let b(x) be the functional inverse of a(x). Let c(x) = x^2 +1 - exp(-2x). D(x) = b^[n]( c^[1/2] (a^[n](x)) ) Where n Goes to infinity. D(x) is the Tommy-Mandelbrot function. Conjecture : D(z) is analytic for Re(z) > 0 and z no element of the mandelbrot set from a(x). Regards Tommy1729 « Next Oldest | Next Newest »

 Possibly Related Threads... Thread Author Replies Views Last Post New mathematical object - hyperanalytic function arybnikov 4 2,845 01/02/2020, 01:38 AM Last Post: arybnikov Is there a function space for tetration? Chenjesu 0 1,143 06/23/2019, 08:24 PM Last Post: Chenjesu Degamma function Xorter 0 1,581 10/22/2018, 11:29 AM Last Post: Xorter tommy's simple solution ln^[n](2sinh^[n+x](z)) tommy1729 1 3,549 01/17/2017, 07:21 AM Last Post: sheldonison Tommy's matrix method for superlogarithm. tommy1729 0 2,322 05/07/2016, 12:28 PM Last Post: tommy1729 Should tetration be a multivalued function? marraco 17 23,084 01/14/2016, 04:24 AM Last Post: marraco Introducing new special function : Lambert_t(z,r) tommy1729 2 4,991 01/10/2016, 06:14 PM Last Post: tommy1729 Dangerous limits ... Tommy's limit paradox tommy1729 0 2,529 11/27/2015, 12:36 AM Last Post: tommy1729 Tommy's Gamma trick ? tommy1729 7 8,577 11/07/2015, 01:02 PM Last Post: tommy1729 Tommy triangles tommy1729 1 2,804 11/04/2015, 01:17 PM Last Post: tommy1729

Users browsing this thread: 1 Guest(s)