# Tetration Forum

Full Version: Recurring digits
You're currently viewing a stripped down version of our content. View the full version with proper formatting.
For the Ackermann function with $n \ge 10$ and $k \ge 2$:

$2 \rightarrow n \rightarrow k \equiv 2948736 \; (mod \; 10^7)$

$3 \rightarrow n \rightarrow k \equiv 4195387 \; (mod \; 10^7)$

$4 \rightarrow n \rightarrow k \equiv 1728896 \; (mod \; 10^7)$

$5 \rightarrow n \rightarrow k \equiv 8203125 \; (mod \; 10^7)$

$6 \rightarrow n \rightarrow k \equiv 7238656 \; (mod \; 10^7)$

$7 \rightarrow n \rightarrow k \equiv 5172343 \; (mod \; 10^7)$

$8 \rightarrow n \rightarrow k \equiv 5225856 \; (mod \; 10^7)$

$9 \rightarrow n \rightarrow k \equiv 2745289 \; (mod \; 10^7)$

$11 \rightarrow n \rightarrow k \equiv 2666611 \; (mod \; 10^7)$

$12 \rightarrow n \rightarrow k \equiv 4012416 \; (mod \; 10^7)$

$13 \rightarrow n \rightarrow k \equiv 5045053 \; (mod \; 10^7)$

$14 \rightarrow n \rightarrow k \equiv 7502336 \; (mod \; 10^7)$

$15 \rightarrow n \rightarrow k \equiv 859375 \; (mod \; 10^7)$

$16 \rightarrow n \rightarrow k \equiv 415616 \; (mod \; 10^7)$

$17 \rightarrow n \rightarrow k \equiv 85777 \; (mod \; 10^7)$

$18 \rightarrow n \rightarrow k \equiv 4315776 \; (mod \; 10^7)$

$19 \rightarrow n \rightarrow k \equiv 9963179 \; (mod \; 10^7)$