(11/18/2011, 08:57 PM)sheldonison Wrote: [ -> ]I'm pretty sure it is possible to generate an analytic sexp(z) function from the alternative fixed point after all....

I generated a taylor series and theta mapping, from the secondary fixed point. The complex plot is very pretty, and shows the z^3 pattern around sexp(z=-1). At the real axis, visually the sexp_l2(z) function looks as predicted in the previous post (see approximation graph). This sexp_l2(z) function is also analytic everywhere in the upper and lower half of the complex plane, with singularities at the real axis for integer values of z<=-2. So, this is another different analytic tetration solution for base(e), which meets all of the same requirements as the preferred solution, but obviously looks very different at the real axis, and in the complex plane, since it converges to the secondary fixed point,

, as imag(z) increases or as real(z) decreases. The period of the superfunction ~=1.3769+2.1751i

. Here, for the log(log(L2)), we use

. Initially, the mistake I made was to use

, which is a correct alternative way to unwrap the inverse schroder function to the complex plane to generate the superfunction, but it does not allow the theta(z) mapping to generate sexp(z).

Like the solution using the primary fixed point, the limiting value for the lower half of the complex plane is the conjugate of the L2.

[

attachment=928]

Here is the graph, at a radius of 0.5, around z=-1, showing the three loops around the unit circle.

[

attachment=929]

Here is the taylor series, also generated around z=-1. I also generated a z+theta(z) for imag(z)>0.1i. To get the two series to converge towards each other, I had to get a very good seed value, and even then, convergence was very slow, requiring perhaps 50 iterations to get these results. The algorithm I used to generate a seed value was to start with sexp(z) from the primary fixed point, and use

. I used that to generate an initial theta(z) mapping, which still required tweaking before I could get convergence. Also, I was only able to use a radius of about 0.7 for the sexp(z) function about z=-1, so I wasn't sure if that would converge or not. To help improve convergence, I needed a better initial seed. So I also had to generate a real valued Fourier transform,

, where theta2(z) had about a half a dozen terms. Both of these functions were iterated against

. The taylor series below is accurate to about 32 decimal digits, when compared to

for imag(z)>0.1i.

. After each iteration generating the sexp_l2 approximation at z=-1, from the superfunction approximation, I forced a0=0, a1=0, and a2=0, which was required for convergence.

Code:

`sexp from 2nd fixed point taylor series, generated around sexp(-1)=0.`

a0= 0

a1= 0

a2= 0

a3= 6.0525428091015848467396904114867

a4= -0.60849523747536175511806501610675

a5= -5.8574541962938452347169436100018

a6= -5.8154757843204092671165810360382

a7= 2.5347219528124619394630198728768

a8= 6.4668821970795532719465378531827

a9= 4.4871156839279985057981689319166

a10= -2.3500517589865009654200487701366

a11= -4.8774610594145425557598915202919

a12= -3.2684402012509980035269413156892

a13= 1.3654919521689999892599664565609

a14= 2.9823665195110101683443466612379

a15= 2.2661831696822414547275937778816

a16= -0.52913207870690413983768829488530

a17= -1.5156285520432398053435680304692

a18= -1.4572517446695661697863665832605

a19= 0.094286830609106271622763115792468

a20= 0.61110636950519339942198876521363

a21= 0.86271978601510899914905441427631

a22= 0.038974421486596403801894699769519

a23= -0.14905777043601514522125408517461

a24= -0.47896585094427931499121014795675

a25= -0.030389143449596281145270404911561

a26= -0.042825998034817123208188951486868

a27= 0.26235902102501291355107613937971

a28= -0.014143244950329277386417867196816

a29= 0.10059827919484809141333725260695

a30= -0.15454513160875109801594287654923

a31= 0.050006138519215390765363753443150

a32= -0.10520795919021832977856144839921

a33= 0.10624377494623484634694597176958

a34= -0.068484597990327511436726680258115

a35= 0.094944460228304998109629565511086

a36= -0.085693727084796985310665688533151

a37= 0.074122213721890768173136590316211

a38= -0.083843984677348783907640163390188

a39= 0.076235966508003484127877597757711

a40= -0.073069389756946858076727994027333

a41= 0.075222762588118941471666671581810

a42= -0.070612019609800271404236550635959

a43= 0.069441350373969278684007195642263

a44= -0.068881006958076546205688133213681

a45= 0.066217164743985940967056670962088

a46= -0.065261808225731542796012464732002

a47= 0.064014547545150315863062824154253

a48= -0.062316195718567494332301728926411

a49= 0.061294332906226487840725743704704

a50= -0.060029039396985886662256396924140

a51= 0.058764049550308815974907383174684

a52= -0.057730167455123192197602214419251

a53= 0.056599488372003113915391804142194

a54= -0.055541057151639765193298395532515

a55= 0.054560157576525914731163221375545

a56= -0.053565536674136590005525205437557

a57= 0.052629716197772950980480888304674

a58= -0.051728553326544954734152425491973

a59= 0.050844493606782859378117101810769

a60= -0.050000501525925342307229440392680

a61= 0.049181281229267069678508024865434

a62= -0.048386033785257460166130157341700

a63= 0.047619527381412221049137805806908

a64= -0.046875076515792168847026835482228

a65= 0.046153557896303522805721778538128

a66= -0.045454760295123160291375736294242

a67= 0.044776065510160199491799413861579

a68= -0.044117595385215902555503712705649

a69= 0.043478330251192648438922293764535

a70= -0.042857106284648360469480988317676

a71= 0.042253521301300292210596172100789

a72= -0.041666683066062752366849813544716

a73= 0.041095876145594636984485302734057

a74= -0.040540545496565613945077962499150

a75= 0.040000002117742705825994214770159

a76= -0.039473680162673857504905441992248

a77= 0.038961041511940238193398136688527

a78= -0.038461538061213742686998410078651

a79= 0.037974682757072796139145638913056

a80= -0.037500000856492225977549714336736

a81= 0.037037036646204616366175962080078

a82= -0.036585365813093889607615969483647

a83= 0.036144578520061409527864163769823

a84= -0.035714285553913653372657407963149

a85= 0.035294117694663812812247714829208

a86= -0.034883720959274005451397406041107

a87= 0.034482758574956584392754574654857

a88= -0.034090909117630668844739474066681

a89= 0.033707865165393714267654270592895

a90= -0.033333333324472619467885396896417

a91= 0.032967032976007199844301758708358

a92= -0.032608695648281905690683339130091

a93= 0.032258064515612316681201977767890

a94= -0.031914893619135479632053443899399

a95= 0.031578947366827529439356158688524

a96= -0.031250000000463649984311504584008

a97= 0.030927835051828540795825673426539

a98= -0.030612244897519756304248381285685

a99= 0.030303030303287137214584066663769

a100= -0.029999999999966282031229404541557

a101= 0.029702970296949837283873331539097

a102= -0.029411764705965021657699041094067

a103= 0.029126213592195908278373798109699

a104= -0.028846153846150793259645857652719

a105= 0.028571428571446783989204643005906

a106= -0.028301886792438526629856969692978

a107= 0.028037383177574696251348668866060

a108= -0.027777777777779823427720230977851

a109= 0.027522935779812846337183948157237

a110= -0.027272727272729551533867006685424

a111= 0.027027027027026594871373241617209

a112= -0.026785714285713708587427338763126

a113= 0.026548672566372367355487980292010

a114= -0.026315789473683846658285369595985

a115= 0.026086956521739115588647915103517

a116= -0.025862068965517422422639852899428

a117= 0.025641025641025545847388991708705

a118= -0.025423728813559251424682876256784

a119= 0.025210084033613403390708306581287

a120= -0.025000000000000210634068453080186

a121= 0.024793388429752111676536615771926

a122= -0.024590163934425784207269337708914

a123= 0.024390243902438972919951753608139

a124= -0.024193548387097878008656721979599

a125= 0.023999999999999874830826012878455

a126= -0.023809523809522177198866059223151

a127= 0.023622047244095016547447625736730

a128= -0.023437500000004730528259615801748

a129= 0.023255813953486943095952593420534

a130= -0.023076923076917084925513343342322

a131= 0.022900763358783736467796311748204

a132= -0.022727272727291509099320846247737

a133= 0.022556390977433940347123100851247

a134= -0.022388059701470332273740288257628

a135= 0.022222222222254205500382914734533

a136= -0.022058823529479415282418061328820

a137= 0.021897810218922467761077074543046

a138= -0.021739130434698909152627982450815

a139= 0.021582733813118207956767051755867

a140= -0.021428571428785024559533003066287

a141= 0.021276595744385680497554700219427

a142= -0.021126760563064445336698085322633

a143= 0.020979020979823863900839059151042

a144= -0.020833333333871461238610179305475

a145= 0.020689655170932338970321143814915

a146= -0.020547945204338179052061514895723

a147= 0.020408163268868439831447630713248

a148= -0.020270270270944964825128555194145

a149= 0.020134228180832249842369921195487

a150= -0.019999999996382145768944457088909

a151= 0.019867549683848916030390073901517

a152= -0.019736842101884200464284895313679

a153= 0.019607843104935080898558359139368

a154= -0.019480519472747153686365539175781

a155= 0.019354838769987628622500042979499

a156= -0.019230769194904427325515899160343

a157= 0.019108280114821735333622468050053

a158= -0.018987341782410682797657178061368

a159= 0.018867924762827561642329485236602

a160= -0.018749999782550921947274006260191

a161= 0.018633539801386849975790975198512

a162= -0.018518518784548856555456574041866

a163= 0.018404908859539817637569621034230

a164= -0.018292681833246517878352101357825

a165= 0.018181816011532742375200430960923

a166= -0.018072291311787620165426068307671

a167= 0.017964075079476270315483234073891

a168= -0.017857137826157011051469312107843

a169= 0.017751471802095868856191038213042

a170= -0.017647072166987844489621007896549

a171= 0.017543870851218341724085525290953

a172= -0.017441838139502430481295643756101

a173= 0.017341018294974304424367295663764

a174= -0.017241450709916318715211642676403

a175= 0.017142892764765992718387963486856

a176= -0.017045355278105614225544052063673

a177= 0.016949106072439699278655991418933

a178= -0.016854276424282969507424937927475

a179= 0.016759868130023045438921363043654

a180= -0.016666214315116921424792262275298

a181= 0.016574604276500489383923106468323

a182= -0.016485031090073264715644393566068

a183= 0.016393526409814549014622248699611

a184= -0.016302232081226604371621173580053

a185= 0.016217205012887436111175962990360

a186= -0.016135166958570918826264050175108

a187= 0.016041578337246276076860565681463

a188= -0.015947465741735751400414051023663

a189= 0.015880811347614127000659372647187

a190= -0.015812268974115238817285732324294

a191= 0.015693934950496055261552846318831

a192= -0.015578762616167368077787740783347

a193= 0.015590629166910915436453027039959

a194= -0.015540807357621775424779779754165

a195= 0.015292819039848609300335564328156

a196= -0.015101732862617970858553288354058

a197= 0.015474986702580039507486900124995

a198= -0.015381046865367596879509632876324

a199= 0.014517304156196916116826663108209