Gottfried Wrote:But that is funny. What else is u = alpha + beta*I , so to have some U with imaginary part 1*I or -1*I, you use beta = 1 or beta = -1 .

And then see, what value the real part must have such that the resulting s is purely real.

What I mean is that any time You define an arbitrary complex number u you have to consider both roots of (-1) and only later get rid of one if that does not add any information. Usually it does not, so people already initially dismiss the idea of 2 roots of sqrt(-1). Euler did not, however, and that is why he never made mistakes.

Which means that beta is 1, but sqrt(-1) is -i and +i simultaneously not because of beta, but because of 2 values of sqrt(-1) which can occur simultaneously for any given beta.

If You take beta = - 1 , You get u=a-sgrt(-1) but sqrt (-1) again taken as usual is +-i, so You have a-+i instead of a+- i as in case of b=1. Not that it matters, but it matters in your graphs, as by using +-i instead of +- beta You will get 2 values of IMAG(t) = +i and -i in the right side of Y axis, meaning 2 symmetric curves there.

Quote:And while the graph shows only u = alpha -pi*I .. u=alpha + pi*I there is no problem to extend the graph to u = alpha + (beta + 2*k*pi)*I - there is a rough periodicity with a distortion then. Just plot it in other ranges.

Could You please

plot few examples on the current plot just to get the idea-it is very interesting to see the character of those branches- I am really sorry, I have only excel as a tool and even that I use for business tables not for graphing functions. So please...

Quote:h(e^-pi/2) diverges which it does not, and s in that case is not 4,81 = e^pi/2......... but 0,20........=i^i.

I think, may be wrongly, that beta in Your case corresponds to the power of e in tetration of (e^beta). If not, please correct me.

So I think if beta = pi/2 it is Ok, as h(e^pi/2) diverges and has 2 values +I , -I and ONLY then other branches, so e^pi/2 is a real value of s that corresponds to complex to real transformation as s>e^1/e. You should be able to see both I and - I at beta = pi/2.

But if beta = -pi/2 something is wrong as (e^-pi/2) = 0,20..and

(e^-pi/2)^(e^-pi/2)^(e^-pi/2) ....... converges, and is 0,47..... which means that is real to real case where beta should have been 0, not -pi/2- there should not have been such branch on a graph in this quadrant.

So for me it looks that if You just fold the graph along Y so that left side superimposes on right side You will have the right graph+ have left side free to plot convergent values of h(e^beta) where e^beta< e^1/e so beta < 1/e (including negative beta).

May be I misunderstand something still in the role of each variable, but, if You will be able to explain it to

me, others will easily understand

Best regards,

Ivars