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Hyperoperations and Nopt Structures 
 

Alister Wilson 

 

 

Abstract (Beta version) 

 

The concept of formal power towers by analogy to formal power series is introduced. 

Bracketing patterns for combining hyperoperations are pictured.  Nopt structures are 

introduced by reference to Nept structures.  Briefly speaking, Nept structures are a 

notation that help picturing the seed(m)-Ackermann number sequence by reference to 

exponential function and multitudinous nestings thereof. 

A systematic structure is observed and described. 
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I Introduction 
 

In this paper, we think about some very large numbers, and reveal some of the 

complexity that can sometimes be hidden.  A central aspect of this paper is to explore, 

enumerate and survey some patterns connected with the fast-growing hierarchy and 

the Ackermann function.  The second part of the paper is a sometimes opaque 

philosophy of a perspective viewpoint about the natural numbers.  The third part 

reminds our readers that for every incremental increase in the hyperoperations, 

usually symbolised by an additional Knuth arrow, there are lots of numbers that fall 

between the two natural and workable methods of top-down and bottom-up 

bracketing.  While addition and multiplication have the desirable associative property, 

exponentiation and above are non-associative and actually the number of different 

bracketings given an n-fold exponential expression is the same as the Catalan 

numbers.  Having said that, most of mathematics doesn’t need to concern itself with 

this kind of complexity, and indeed it is usually too complex to deal with anway. 

The Nept and Nopt structures introduced in the fourth part of this paper are mostly a 

tool to help clarify and guide thinking about fast-growing structures, such as the 

hyperoperation hierarchy, Ackermann numbers, functional powers, slow and fast 

growing hierarchies, hereditary base representations, ordinal numbers and notations, 

Cantor Normal Form, the Veblen hierarchy, and in general, indicate some patterns in 

common and differences between the finite and infinite realm. Nopt structures 

emphasise the nestedness of recursion structures. Usually in maths, the nestedness 

information is somewhat hidden, by the use of new, derived symbols and definitions 

from other previously derived definitions and symbols in order to create various 

notations.  Nept structures retain structural information that is not accounted for by 

Knuth arrow notation or other notations related to hyperoperators. And an interesting 

result is that although the Ackermann function increases faster than any of the 

hyperoperators in the hyperoperator hierarchy, by representing Ackermann numbers, 

or base(m) Ackermann numbers into Nept structures, with the technique of a 

consistent minimal symbolic notation, the growth rate of the notation is exponential. 

The technique of finding a minimal symbolic notation to capture essential 

computational information and generalise the notation helps to reveal the 

computational pathway connecting the constituent components. A useful observation, 

is that Nept structures can resolve the hyperoperator hierarchy to multi-layered 

nestings of exponential power towers. 

The fifth part considers properties of the Conway arrow numbers by connecting them 

with the Knuth arrow numbers that follow the hyperoperation hierarchy, and the 

tower structures formed from Knuth arrow numbers. The interesting result here, is 

that there is a sequence from the Conway numbers that has a similar role to the 

Ackermann numbers. By the way Ackermann numbers are defined, it is clear they 

form a diagonal sequence through the hyperoperator hierarchy. By suitably defining a 

Nopt structure based on Knuth arrows (that I call Naropt structures, or nested arrow 

power towers) we find that there is a sequence of Conway numbers that form a 

diagonal sequence through the hierarchy of Naropt structures. 

Apart from a tool to guide thinking about recursion structures it is not easy to think of 

useful applications. But by reinterpreting or modifying parameters and patterns in 

Nopt structures they may prove to be useful in other areas of maths and possibly in 

computer engineering as well. 
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II Philosophical Considerations 
 

The following is the standard definition of N=Natural Numbers. 

“Peano's successor function S(n) = n+1 uniquely covers all numbers 1.. starting from 

n=0 by iteration of S, and thereby defines the set of natural numbers.” 

To understand N better and more accurately consider 

N = {N[T, SPN]} U {N[UDC]} 

T = Tally; SPN = Standard Positional Notation 

UDC = Unbounded Descriptive Capability 

This mysterious formula acknowledges the three viewpoints about N 

N[T] � As a tally without bound 

(Self-referential concept about the action of counting and size representation) 

N[T, SPN] � As a tally without bound OR As an SPN digit sequence without bound 

(This is what people think of about N, in normal, practical situations.) 

N[UDC] � Counting numbers with Unbounded Descriptive Capability 

(For example, Scientific Notation, power towers etc are an extended conception of N.) 

Counting numbers, in a basic and fundamental way, serve the purpose of indexing and 

sequencing items, entities etc and one possible way to provide lexicographic ordering. 

The tally system allows the fundamental process of pointing to an item, incrementing 

a counter (recording the presence of the item) changing status from unread to read or 

removing same item from a collection set. 

In this way items in the collection can be counted. 

The Thoroughness Property is evident, we believe that incrementing is the 

unambiguous, systematic method that counts things one-by-one forever. 

The reality is that “forever” should be relativised to mean towards a “horizon”, 

that is not well-defined but accurately represents an intuition about self-reference 

regarding “quantity” (the transitions betweeen initial tallying, SPN, and digits-in-

sequence tally), and intuition concerning “large enough”. 

N[T, SPN] gives the unestimable advantage of allowing a sensible method of 

Information Condensation while retaining Thoroughness Property. 

With SPN, “large enough” can be made small by use of “base” and in so doing frees- 

up “large enough” to be controlled by other aspects of the description. 

And so “large enough” is now the consideration of number of digits in the SPN 

sequential presentation. 

With N[UDC] we have an Emerging Trade-Off between Thoroughness Property and  

Unbounded Descriptive Capability. 

When considering the various big numbers more information is directed towards 

magnitude and less towards fine details.  This is a trade-off between Descriptive 

Capability and Thoroughness Property.  It is an emerging trade-off because there are 

phase transitions in the trade-off. 

For example: A googol is both SPN-describable (a digit sequence of 1 followed by 

100 zeros) and UDC-possible (10^100).  A googolplex is not SPN-describable but is 

UDC-possible (10^(10^100)).  For numbers between googol and googolplex it is hard 

to maintain Thoroughness Property. Introducing treelike structures such as HBN 

(Hereditary Base N) is an attempt to recapture Thoroughness Property but at the 

expense of greater structural pattern complexity. 

Similar phenomena can be observed in the discussions concerning the infinite 

ordinals. 
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Considering large numbers and fast growing functions gives a dual reality: 

A) A tangible magnitude-into-pattern transformation 

B) Traditional perspective of ever-increasing patterns of magnitude 

 

FIFF paradigm 

Fuzzy Infinite Fuzzy Finite paradigm 

Finite, infinite dichotomy, that is: {1,…,n} versus {1,…} 

The appearance seems clear and unambiguous 

But this viewpoint is biased by the dominant SPN perspective 

And the evidence from considering Nopt structures shows it is a false dichotomy. 

 

Some of the transitions: 

SPN shows exponentiation as an incremental add-one-digit way.  Knuth arrow 

notation shows Ackermann function as an incremental add-one-to-tally way. 

Nopt structures show that Ackermann numbers increase exponentially with respect to  

Minimal Symbolic Notational requirements on a level playing field (the benchmark or 

yardstick of using multi-level nested layers with a fixed operation, and power towers) 

Nopt structures use a sensible minimal symbolic representation. 

Next stage is “zooming in on” HEFTY Nopt structure with a microscope! 

Can then introduce another level of chunkiness by storing High Resolution HEFTY 

Nopts into little boxes… And start the process again… 

And so on into the ethereal realms of incomprehensible vastness… 

 

The Inevitable chunkiness of large numbers 

In the consideration of fast growing functions there is an inevitable chunkiness that 

comes about due to natural limit of descriptive capabilities. 

You can start out slow with 1, 2, 3 and successor function or fast with Graham’s 

number and g-subscript power towers but the contemplation of pushing out further 

into the endless unboundedness of infinity calls upon chunkiness. 

NOPT structures are dimensionless until an operation is specified, but even though 

they are dimensionless, structure can be identified and codified. 

Reaching out further and more information hiding is natural and unavoidable. 

What about the huge wealth of numbers between g1 and g2 from the gi-sequence 

leading to Graham’s number? We could traverse the intermediary space by applying 

the standard math integer functions to the Knuth arrows. And to do this all the 

structure leading up to “3 hexated to 3’ could be replicated but this time applying to 

number of Knuth arrows, padding out the hyperoperator hierarchy to dizzying realms. 

The beauty of SPN (standard positional notation) numbers is they preserve the initial 

successor function, increment natural and successive orders of magnitude while 

retaining condensation property for as long as a string of digits can go. 

A number of visualisations from Wolfram demonstrations show cellular automata 

applied to binary numbers or other base numbers; we see the condensation property 

that is systematic reuse and exhaustion of previous orders of magnitude. 

An understanding of hyperoperators coded into NOPT structures also has systematic 

reuse of orders of magnitude but the condensation or thoroughness property from 

initial successor function is necessarily relaxed. By using exponentiation and the 

power towers thereof inside a NOPT structure we have the NEPT structures, and now 

the notion of “successor” is transformed or transmuted into “adjacent power tower”. 
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The normal successor function we are so familiar with, that is counting distinct 

symbols is retained and distinctly present in the NEPT structure but we are counting  

Power towers symbolically adjacent to one another. 

(From some perspectives, in some ways, the traditional finite, infinite separation in 

maths is flawed, we should think in terms of required chunkiness and layers of 

nestation.) 

A heptation NOPT structure also contains NOPT structures of all previous orders, that 

is to say, hexation, pentation, tetration, exponentiation are also present and part and 

parcel of heptation structure. A number such as 53,672 is a 10^4 order number, and 

also contains information about previous orders of magnitude. A nonation number 

requires octation, heptation, hexation, pentation, tetration, exponentiation. 

Once we get to the gi-sequence it is like a hyperdrive of magnitude that shows the 

transition between magnitude and pattern. 
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III Bracketing patterns and hyperoperations 
3.1 Some Examples 

3.2 Top-down versus bottom-up 

3.3 Bracketing patterns and binary operations 

3.4 Bracketing patterns with exponentiation and tetration 

3.5 Bracketing and 4 consecutive hyperoperations 

3.6 A quick look at the start of the Grzegorczyk hierarchy 

3.7 Reconsidering top-down and bottom-up 

 

Section 3.1 Some Examples 
 

Take your favorite number such as 256. 

256=200+50+6=128*2=64*4=32*8=16*16. 

These re-expressions of 256 involve addition and multiplication. 

Concerning exponentiation we have: 

)2(22248 33

2225616)2(2 =====  

Concerning iterated exponentiation we have: 

4)2.2(2222222.222242 44)4())2(()2()2()2(16256
2

========
Concerning tetration we have: 

23332 )2()2)(2(16256 ===  

 

Now let’s look at some tetration and exponentiation with bracketing pattern examples: 

 

Table 3.1.1 Tetration examples 

Bracketing pattern Tetration examples Value 

(a   b)   c 4222 44)2( ==  256 

a   (b   c) 222 24)2( 222 ==  

16265536 =  

 

Table 3.1.2 Exponentiation examples 

Bracketing pattern Exponentiation examples Value 

((a    b)   c)   d )3(333 3

3))3(( =  
273  

(a    b)   (c    d) 27)3(3 27)3(
3

=  
2727  

(a   (b    c))   d 813273)3( 3)3()3(
3

==  
813  

 a   ((b    c)   d) )27())3(( 333

33 =  
)27(

3

3  

 a    (b   (c   d)) 2733 33 33 =  

2733  
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Table 3.1.3 More tetration examples 

Bracketing pattern Tetration examples Value 

((a    b)   c)   d )4(4222 4

)4())2(( =  
256256  

(a    b)   (c    d) 442 442)2( 44)2( ==  
25644  

(a   (b    c))   d 
)2()65536())2(

1622)2(2 2

==  
1621665536 )2(65536 =  

 a   ((b    c)   d) 
256}222

222 256))2( N==  256}2
2N

 

 a    (b   (c   d)) 16)2(22 2}2222
216422

N===  
162}2

2N
 

 

 

Section 3.2 Top-down versus bottom-up 
 

TD = Top Down bracketing 

BU = Bottom Up bracketing 

 

Figure 3.2.1 Mixed Top-down and Bottom-up examples 

 

TD THEN TD TD THEN BU

A (3^(3^3)) ^ ((3^(3^3)) ^ (3^(3^3))) B ((3^(3^3)) ^ (3^(3^3))) ^ (3^(3^3))

BU THEN TD BU THEN BU

C ((3^3)^3) ^ (((3^3)^3) ^ ((3^3)^3)) D (((3^3)^3) ^ ((3^3)^3)) ^ ((3^3)^3)

>=3 BU unit >=3 TD unit

A 3 B 3 C 3 D 3

3 3 3 3

3 3 3 3

3 3 3 3

3 3 3 3

3 3 3 3

3 3 3 3

3 3 3 3

3 3 3 3
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Section 3.3 Bracketing patterns and binary operations 
 

We can represent a bracketing pattern in the following BUTDJ way: 

BU and TD components (>= 3) together with Joins of 2 components. 

The innermost components on the left and outermost components on the right. 

The “r ” represents an arbitrary symbol or number. 

 

Figure 3.3.1 The 5 binary bracketings on 4 elements. 

Catalan numbers

x(x(xx))   |  x((xx) x)   |   (xx)(xx)   |   (x(xx)) x   |   ((xx) x) x

5 binary bracketings on 4 elements

2 unit >=3 BU unit >=3 TD unit

r r r r r

r r r r r

r r r r r

r r r r r

 
The Catalan numbers have the following recurrence relation: 

01
0

10 ≥== ∑
=

−+ nforCCCandC
n

i

inin  

Starting from n=0,  the first few Catalan numbers are:  1, 1, 2, 5, 14, 42, 132, … 

 

Table 3.3.1  Exponential representation of the 14 binary bracketings on 5 elements 

33333  

3)33(33  

)33(3 )3(3
 

3)333(3  

333 ))3((3  
)3(3

33

)3(
 

))3((3 33

)3(
 

)3(3 33

)3(
 

)3(33 3

))3((
 

33 )3(
33

 

3)3( )3(
33

 

3)3(3 ))3((
3

 

333 ))3((
3

 

3333 )))3(((

 

 

Figure 3.3.2  Corresponding butdj-representation of these 14 binary bracketings 

14 binary bracketings on 5 elements

r r r r r r r

r r r r r r r

r r r r r r r

r r r r r r r

r r r r r r

r r r r r r

r r r r r r r

r r r r r r r

r r r r r r r

r r r r r r r
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Figure  3.3.3 butdj-representations of the 42 binary bracketings on 6 elements 

 

42 binary bracketings on 6 elements

r r r r r r r

r r r r r r r

r r r r r r r

r r r r r r r

r r r r r r r

r r r r r r r

r r r r r r r

r r r r r r r

r r r r r r r

r r r r r r r

r r r r r r r

r r r r r r r

r r r r r r r

r r r r r r r

r r r r r r r

r r r r r r r

r r r r r r r

r r r r r r r

r r r r r r r

r r r r r r r

r r r r r r r

r r r r r r r

r r r r r r r

r r r r r r r

r r r r r r r

r r r r r r r

r r r r r r r

r r r r r r r

r r r r r r r

r r r r r r r

r r r r r r r

r r r r r r r

r r r r r r r

r r r r r r r

r r r r r r r

r r r r r r r
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Section 3.4 Bracketing patterns with exponentiation and tetration 
 

Table 3.4.1 4 element, 3 operations, mixed exponentiation-tetration examples 

 
I use base_number=2 in all the examples, other small numbers, eg bn=3 are suitable. 

 
Catalan numbers             

                    

xxxx | (xx) xx | x(xx) x | xx(xx) | (xxx) x | x(xxx)  

((xx) x) x | (x(xx)) x | (xx)(xx) | x((xx) x) | x(x(xx)) 

the last five of which are binary.       

5 binary bracketings on 4 elements      

 

<3,3,3> 

222 ))2((  
2)2( )2(

2

 
)2(2 2

)2(  
))2(( 22

2  
)2( )22(

2  

 

<3,3,4> 

))2(( 222
 )2( )2(2 2

 
)2(2 2

)2(  
))2(( 22

2  
)2( )22(

2  

 

<3,4,3> 

222 ))2((  
2)2( )2(

2

 )2( 2)2( 2

 
))2(( 22

2  
)2( )22(

2  

 

<3,4,4> 

))2(( 222
 )2( )2(2 2

 )2( 2)2(2

 
))2(( 22

2  
)2( )2

2
(

2  

 

 

<4,3,3> 

222 ))2((  
2)2( )2(

2

 
)2(2 2

)2(  2))2(( 22

 2)2( )22(

 

 

<4,3,4> 

))2(( 222
 )2( )2(2 2

 
)2(2 2

)2(  2))2(( 22

 2)2( )22(

 

 

<4,4,3> 

222 ))2((  
2)2( )2(

2

 )2(2)2( 2

 2))2(( 22

 2)2( )22(

 

 

<4,4,4> 

))2(( 222
 )2( )2(2 2

 )2(2)2(2

 2))2(( 22

 2)2( )22(
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Table 3.4.2 4 element, 3 operations, mixed (hyp=3,4) and with comparisons 

 

 

<3,3,3>    [ Note: 65,536 = 2^16 ] 

222 ))2((  
2)2( )2(

2

 
)2(2 2

)2(  
))2(( 22

2  
)2( )22(

2  

=256  =256  =256  =65,536 =65,536  

 

<3,3,4> 

))2(( 222
 )2( )2(2 2

 
)2(2 2

)2(  
))2(( 22

2  
)2( )22(

2  

=16^16 =16^16 =256  =2^256 =2^16  

 

<3,4,3>    [ Note: 4^^4 = 4^(4^256) and 2^^5 = 2^(2^16) ] 

222 ))2((  
2)2( )2(

2

 )2( 2)2( 2

 
))2(( 22

2  
)2( )22(

2  

=2^16  =256  =4^(4^256) =2^16  =2^^5 

 

<3,4,4> 

))2(( 222
 )2( )2(2 2

 )2( 2)2(2

 
))2(( 22

2  
)2( )2

2
(

2  

=256^256 =16^16 =4^(4^256) =2^256 =2^^5 

 

<4,3,3>    [ Note: (2^16)^2 = 2^32 and 2^^16 = 2./.2 )16 ] 

222 ))2((  
2)2( )2(

2

 
)2(2 2

)2(  2))2(( 22

 2)2( )22(

 

=256  =2^32  =256  =2./.2 )16 = 2./.2 )16 

 

<4,3,4> 

))2(( 222
 )2( )2(2 2

 
)2(2 2

)2(  2))2(( 22

 2)2( )22(

 

=16^16 =(2^16)^^2 =256  =2./.2 )256 = 2./.2 )16  

 

<4,4,3> 

222 ))2((  
2)2( )2(

2

 )2(2)2( 2

 2))2(( 22

 2)2( )22(

 

=2^16  =2^32  =4^(4^256) = 2./.2 )16 = 2./.2 )16 

 

<4,4,4> 

))2(( 222
 )2( )2(2 2

 )2(2)2(2

 2))2(( 22

 2)2( )22(

 

=256^256 =(2^16)^^2 =4^(4^256) =2./.2 )256 = 2./.2 )2^16 

 

Ordering the inequalities: 

256 < 2^16 < 2^32 < 16^16 < 2^256 < 256^256  

< 2^(2^16) < (2^16)^^2 < 4^(4^256) < 2./.2 )16 < 2./.2 )256 < 2./.2 )2^16 

Notice the values in bold: 

256 (bu itera exp)  2^16 (td itera exp) 

256^256 (bu itera tetra)  2./.2 )2^16 (td itera tetra) 
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Figure 3.4.3 Diagrams of the 4 element, 3 operations, mixed (hyp=3,4) examples 

 

((xx) x) x | (x(xx)) x | (xx)(xx) | x((xx) x) | x(x(xx)) number exp tet
5 binary bracketings on 4 elements bu td join
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Section 3.5 Bracketing and 4 consecutive hyperoperations 
 

Table 3.5.1 3 elements and 2 binary operations by 4 hyperoperations 

 
I use base_number=3 in the examples, other small numbers, eg bn=2 are suitable. 

 

<3,td> 

)3(
3

3   
)3(33   

)3(33   
)3( 33  

 

<3,bu> 
33)3(   )3( 33   )3( 3

3   3

3)3(  

 

<4,td> 

3)3(
3

  3)3(
3

  3
)3(3   3

)3( 3  

 

<4,bu> 
33 )3(   )3(33   )3(33   3

3 )3(  

 

<5,td> 

3
)3( 3   3

)3(3   3)3(3
  3)3( 3

 

 

<5,bu> 
3

3 )3(   )3(3
3   )3(33   33 )3(  

 

<6,td> 

)3( 33   )3(3
3   )3(3

3   )3( 3
3   

 

<6,bu> 
3

3)3(   )3( 3

3
  )3( 33   33)3(  

 

Using a standard notation for hyperoperations (3,4,5,6), and moving in a direction that 

is counter-clockwise from the top-right corner, the operations being used are: 

exponentiation, tetration, pentation and hexation. Of course, pentation and hexation 

produce very big numbers indeed. 

These numbers are way, way too big for computers to resolve into a string of digits. 

We can contemplate the patterns produced and admire the complexity. 

How to read these expressions – some selected examples: 
)3(33   “ 3 exponentiated to {3 pentated to the 3} “ 
3

3 )3(   “ {3 pentated to the 3} exponentiated to the 3 “ 

)3( 3

3
  “ {3 hexated to the 3} tetrated to the 3 “ 
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Figure  3.5.2 A colored square diagram of Table 3.5.1: 

 

1st number 2nd number 3rd number

parenthesis not included parenthesis included
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Section 3.6  A quick look at the start of the Grzegorczyk hierarchy: 
 

The functions at finite levels )( ωα <  of any fast-growing hierarchy coincide with 

those of the Grzegorczyk hierarchy: 

 

1)(0 += nnf  

nnnnfnf n 2)()( 01 =+==  

nnfnf nn 2)()( 12 ==  

 

Moving from )(2 nf  to )()( 23 nfnf n=  is quite a lot more complicated: 

 

)2)(2()( 22

2 nnf nnn=  

 

)2)(2(2)( 2)2)(2(3

2

2

nnf nnn nnnn

=  

 

)2)(2(22)( 2)2)(2()2)(2(24

2

22)2)(22(

nnf nnnn nnnnnnnnnnn

=  

 

If we let: 

na n21 =   ,  
1222

2

anna ==   ,  
12

2

22 )2)(2(

3

aannnn

a ==   , … 

 

We can find an expression for )(2 nf n  : 

 

123
1121231231 222..2)()( anfnf
aaaaaaaaaan n LL−==  

 

Obviously, the complexity increases quite dramatically so usually inequalities are 

used when discussing the Grzegorczyk hierarchy. 
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Section 3.7 Reconsidering top-down and bottom-up 
 

As the example from Grzegorczyk hierarchy shows, the complexity is apparent when 

creating fast-growing hierarchies from functional powers. 

Even starting from a simple formula f_0 = n + 1, and by the time you get to f_3, the 

unwieldy nature becomes apparent. 

Hyperoperations use top-down as the natural method and top-down is the default 

bracketing for hyperoperations. For example, repeated tetration is pentation. 

We prefer to use the term “iterated tetration” to refer to tetration when using the 

bottom-up bracketing method.  Bottom-up method, in particular, bottom-up pentation 

(or iterated tetration) is the method that is used to generate the epsilon numbers (at 

least, up to e_w). 

 

So let’s consider an example of bu-pentation on a small finite number: 

333 33 =  

Now this is tetration or repeated exponentiation so the natural bracketing is used: 

)3(3 3

33 =  

Now let’s iterate taking the current number and tetrating it to 3. 

)
333(333 )3(333 )3()3( = = y, say. 

][][333 ][))3((
yyy=  = z, say. 

}{}{3333 }{)))3(((
zzz=  and let’s stop here. 

 

The point being that the picture developing is fractaline in nature. 

Actually, this is the same kind of picture that forms when considering the epsilon 

numbers: 

0εωωω
ωω ==↑↑
N

 

10

0
0)( εεωωω
εε

==↑↑↑↑
N

 

21

1
1))(( εεωωωω
εε
==↑↑↑↑↑↑

N

 

32

2
2)))((( εεωωωωω
εε

==↑↑↑↑↑↑↑↑
N
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A thought about various approaches to large numbers. 

 

Addition and multiplication are commutative and associative. 

But exponentiation, tetration, and so on, are not. Some examples: 

3^4=3*3*3*3=81 whereas 4^3=4*4*4=64 

2^(3^4)=2^81= 2,417,851,639,229,258,349,412,352  whereas (2^3)^4 = 8^4 = 4,096 

3^^2 = 3^3 = 27 whereas 2^^3 = 2^(2^2) = 2^4 = 16 

2^^(2^^2) = 2^^4 = 2^(2^(2^2)) = 2^16 = 65,536  whereas (2^^2)^^2=4^^2=4^4=256 

For exponentation, tetration and so on, different bracketing produces different results. 

 

Patterns to large numbers: 

Abbreviations: Fin=finite, inf=infinite, bu=bottom-up method, td=top-down method 

a. (fin, td): <3^^3,  3^^(3^^3), 3^^(3^^(3^^3)), …> 

b. (fin, bu): <3^^3,  (3^^3)^^3, ((3^^3)^^3)^^3, …> 

c. (inf, td): <w^^w,  w^^(w^^w), w^^(w^^(w^^w)), …> 

d. (inf, bu): <w^^w,  (w^^w)^^w, ((w^^w)^^w)^^w, …> 

So pentation (the next operation after tetration) uses method a. from above:   

3^^^2=3^^3,  3^^^3=3^^(3^^3),  3^^^4=3^^(3^^(3^^3)) 

And method d. corresponds to the epsilon sequence:  <e0, e1, e2, …> 

It is curious that finite numbers via hyperoperations use the top-down method 

Whereas infinite ordinals via epsilon numbers use the bottom-up method. 

The other methods b. and c. are also possible to consider. 

 

Table 3.7.1 A comparison of bu and td iterated tetration 

 

The comparison below shows how compared to regular pentation, bu-pentation has a 

more complicated, fractaline nature, with nested layers of parentheses. 

 

Bu-pentation td-pentation 

(2^^2)^^2 = (2^2)^(2^2) 2^^(2^^2) = 2^2^2^2 

((2^^2)^^2)^^2 

= ((2^2)^(2^2))^((2^2)^(2^2)) 

2^^(2^^(2^^2)) = 2^2^…(2^16)…^2^2 
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IV Nopt Structures 
4.1 Introduction to Nept and Nopt structures 

4.2 Defining Nopts from Nepts 

4.3 Seed Values:  “n” and “theta ) n” 

4.4 A method for generating Nopt structures 

4.5 Magnitude inequalities inside Nopt structures 

 

Section 4.1 Introduction to Nept and Nopt structures 
 

If you’re reading this paper, and fairly new to hyperoperations, maybe you should try 

to “figure out” with pencil and paper some examples such as 3^3, 3^^3, 3^^^3, and 

3^^^^3 in order to get some intuition about the patterns I’ll be discussing below. 

The way I suggest, is to use the notations aa

aa aandaaa ,,, , for exponentiation, 

tetration, pentation and hexation, and see how they relate to each other, and how these 

hyperoperations can be reexpressed as nestings of exponential power towers. 

I hope that the ideas about Nept and Nopt structures show some new ways of looking 

at some familiar things, and that with some patience, the material below can be 

understood and is reasonably clear.  The Glossary of terms provides additional 

explanations of the terminology and definitions. 

 

A NEPT structure, or Nested Exponentional Power Tower structure is the 

representation of a large number as multi-layered nested exponentional power towers. 

A NOPT structure, or Nested Operational Power Tower structure is a generalisation 

of multi-layered nested exponential power towers. 

 

Usually we think of power towers where the operation is exponentiation, but the 

concept of nested power towers could be used with other operations from the 

hyperoperation hierarchy as well as any others where height of power tower is well-

defined and each power tower in the expression produces a natural number and the 

operation is a strictly increasing function on the natural numbers. 

 

Other operations are possible for putting into nested power towers for example, such 

as (+, iterated addition) and (*, iterated multiplication) and (^^, tetration, iterated 

tetration) and so on.  Considering very large numbers, other applications of NOPT 

structures are possible, by using powerful operations such as the ig -sequence from 

Graham’s number construction, where 3333 4

1 ↑=↑↑↑↑=g , and 64g = Graham’s 

number. Even more powerful operations can be considered, such as g-subscript 

towers where each “subscript tower” has a well-defined height (of nested g-subscript 

symbols, ending with 1g )   (see Section 5.1). 
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Section 4.2 Defining Nopts from Nepts 
 

In this section, we see there is a natural way to define Nopts from Nepts. 

By way of motivation, we need to consider the Ackermann number sequence and the 

Base(m)-Ackermann number sequence that is related to the Ackermann number 

sequence. 

The notation nm ↑↑↑K  was introduced in 1976 by Donald Knuth. 

A similar function was defined by W. Ackermann in 1928. 

The Ackermann numbers are the numbers 

11↑ ,  22 ↑↑ ,  33↑↑↑ ,  44 ↑↑↑↑ , … 

The first Ackermann number is 1, the second is 4, and the third is 

33
33 3}3

N

 

So in words, the third Ackermann number is a tower of threes where the number of 

threes is: 

333 = 7,625,597,484,987. 

Before we look at the fourth Ackermann number it’s worth comparing  

33↑↑↑  with 44 ↑↑↑  which can be written: 

44 344 21
NNN

4

4)4)4)444
444

=↑↑↑
 

Anyway, the fourth Ackermann number can be written as nested layers of nestings of 

exponential power towers as follows: 

4434421
L

444 3444 21
L

NN

4444 34444 21
NNN

NN

4

4)
4

4)
4

4)
4

4

44

44

4)4))4

4)4))444 =↑↑↑↑
 

Related to the Ackermann number sequence is the Base(m)-Ackermann number 

sequence:  ...,,, 3 mmmmmm ↑↑↑↑ . Consider an example with m=3. 

The first number in this sequence is 2733 =  and this number is small and is easy to 

write using place value notation or standard positional notation. 

The second number is 9877625597484333 2733 3

===  

The second base(3) Ackermann number can be reexpressed slightly differently to 

emphasize a structural pattern: 

3}3
33

 

The third base(3) Ackermann number is 

43421
N

3

3 3)3)333
33

=↑↑↑
 

The canonical Nopt structure is the Nept structure where the operation being used is 

exponentiation. The canonical relationship between Nept and Nopt structures is that 
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an OrderType of a Nopt structure can be well-defined by comparison with a Nept 

structure. In other words, the OrderType of a Nopt structure borrows from the 

canonical Nept structure related to some hyperoperation: 

Hyperoperation ( 4≥n )  < - >  NEPT )4( ≥n   < - >  NOPT )4( ≥n  

 

The Nopt structures with OrderType 4 or 5 correspond to the appearance of tetration 

and pentation numbers when they are written into Nept form. 

Nopt structures with OrderType 4 or 5 are (the only) Linear NOPT structures. 

We can use a sensible notation, a minimal symbolic notation, to represent these Nopt 

structures: 
 

Tetration nopt:  n)θ  

 

Pentation nopt: 
n

n
(

)...θθ
 

Hexation NOPT structure has OrderType 6 and has 2-dimensional array structure: 

 

n

n

n

n

(

M
(

→←^

)...

)

)...

θθ

θθ

 

 

Hepation NOPT structure has OrderType 7 and has (2,1)-dimensional array structure. 

 

n

n
n

n

nn

nn

)

)...)...

}

)...)...

(( (

MKM
↔↔

θθθθ

θθθθ

 

Octation NOPT structure has OrderType 8 and has (2,2)-dimensional array structure. 

 

n

n
n

n

nn

n

n

nn

nn

nn

nn

)

)...)...

}

)...)...

)

)

)...)...

}

)...)...

^

((

((

(

MKM

M

MKM

(

↔↔

→←

↔↔

θθθθ

θθθθ

θθθθ

θθθθ
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Nonation NOPT structure has OrderType 9 and has (2,2,1)-dimensional array 

structure: 

 

n

n

n
n

n

nn

n

n
n

n

nn

n

n

nn

nn

n

nn

nn

nnnn

nnnn

(

(

MKM

(

MKM

MLM

MKMMKM

((((

((((

)

)...)...

}

)...)...

)

)...)...

}

)...)...

)}

)

)...)...

}

)...)...

)

)...)...

}

)...)...

↔↔

↔

↔↔

↔

↔↔↔↔

θθθθ

θθθθ

θθθθ

θθθθ

θθθθ

θθθθ

θθθθ

θθθθ

 

 

By zig-zagging from bottom right corner, in left-up-left-up-left-up-… fashion we can 

build up NOPT structures with higher dimensions. The computation pathway 

proceeds from bottom right corner in left-up-left-up-left-up-… fashion until the top 

left corner. 

 

Linear NOPT structures have Linear Ellipsis Structure. 

Non-linear NOPT structures (OrderType >= 6) have Multi-layered Ellipsis Structure. 

The Ellipsis corresponding to the final top-left corner component of the NOPT 

structure is where the final computation is achieved. Superficially, it looks like a 

Linear Nopt structure, but looking at it carefully, notice that the Ellipsis length (of 

linearly arranged nested power towers) is given by a small number in Tetration and 

Pentation NOPT structures, but in larger NOPT structures is given by a Multi-layered 

Ellipsis expression, that is the combined effort of the rest of the interlinked 

components of the NOPT structure. 

The induced Multi-layered Ellipsis Structure from a NOPT structure has a very 

similar structure to the well-known H-Fractal. 

 

A NOPT-6 structure (hexation) has a 2-dimensional array structure and the induced 

Multi-layered Ellipsis Structure corresponds with a small H-Fractal at the first level. 

A NOPT-7 structure (heptation) has a (2,1)-dimensional array structure and the 

induced Multi-layered Ellipsis Structure corresponds with the H-Fractal at the second 

level of resolution. 

A NOPT-8 structure (octation) has a (2,2)-dimensional array structure and the induced 

Multi-layered Ellipsis Structure corresponds with the H-Fractal at the third level of 

resolution. 

A NOPT-9 structure (nonation) has a (2,2,1)-dimensional array structure and the 

induced Multi-layered Ellipsis Structure corresponds with the H-Fractal at the fourth 

level of resolution. 
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You can observe that in terms of written symbolic requirements, going from NOPT-

(I) to NOPT-(I+1) structure requires twice as many symbol expressions, due to the 

symbol folding that proceeds zigzagging L-U-L-U-L-U-L-U from bottom right corner 

to top right corner. 

 

Section 4.3 Seed Values:  “n” and “theta ) n” 
 

NOPT structures require a fixed SeedValue, that has the roles of  (1) either initiating a 

Linear NOPT Component OR  (2) Controlling Ellipsis Length of a Component. 

 

It can be noticed that the induced SeedValues from a NOPT Structure have a similar 

role to the omega (w) limit which is used as a “default way” of describing the length 

of an infinite list. I think that omega is a shorthand for saying “we don’t know how 

long an unending list of items goes on for, but we’ll call it omega”.  This seems more 

sensible than saying “yes we do know, the list goes on for as many natural numbers 

there are”. This is because, while the process of generating naturals (into Standard 

Positional Notation) is well-defined and clear, the extent of the natural numbers 

depends on how creative we get by combining powerful operations with NOPT 

structures. In other words, the set of Natural Numbers is well-defined at the level of 

(+1)-iterative description, but not at the level of unbounded descriptive capabilities. 

As the examples shown above demonstrate, there are plenty of intermediary ellipsis 

stages that large numbers need to pass through in order to reach an elusive target 

magnitude goal. 

 

The omega limit is used for limit ordinals in the theory of infinite ordinals, but it is 

independent of the values of the symbols in the list. 

So lim<w^1, w^2, …> = w^w, and is understood as an w-limit. 

And lim<w, w^w, w^w^w, …> = e0, and is understood as an w-limit. 

And lim<e0, e0^e0, e0^e0^e0, …> = e1, and is understood as an w-limit. 

And lim<e0, e1, e2, …> = e_w, and is understood as an w-limit. 

In the last example, it doesn’t matter that all the component symbols are much larger 

than omega - (e.g. e0, epsilon zero) – but we always use the “small infinite value” of 

omega (w) to decide the list length of any of these infinite sequences whenever a limit 

to the sequence is desired. Omega is like a convenient yardstick that is used in 

evaluating limit points for horizonal phenomena. 

Whenever a list structure emerges and a limit is desired then the idea that an infinite 

list of symbols can be indexed or sequenced by the natural numbers is called upon. 

So in theory of infinite ordinals, omega is the convenient yardstick. 

In NOPT structures, the induced SeedValues have the “omega role” by deciding how 

long a stage should be lingered upon before the transitioning to other levels becomes 

necessary. 

 

All of the “formal power towers”  in the NOPT structure are given the symbol “theta” 

By “formal” expression, I mean an unevaluated symbolic expression that could be 

evaluated given more information.  The word “formal” here has the same kind of 

meaning as with “formal power series”. 

When the SeedValue is supplied, in theory, the power tower can be evaluated because 

the height information about the power tower is given, then each succeeding power 

tower in the linear Nopt structure can be evaluated with each power tower evaluation 

supplying the height of the next power tower to be evaluated. 
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We don’t have to be too rigid about SeedValues in the structure. 

We could have SeedValues of the form “theta ) n” or SeedValues of the form “n”. 

Sometimes, we may want to ensure that the next linear component in the NOPT 

structure has nontrivial ellipsis value and so we use the SeedValue=“theta ) n” style of 

NOPT structure.  However, I think that for a standard definition of NOPT structure it 

is better to use the second style of NOPT structure where SeedValue=n. 

The reason for this, is that we can write 3^^3, 3^^^3, 3^^^^3, 3^^^^^3 and so on, in 

terms of exponentiation towers, *not* tetration towers etc, and the higher the 

hyperoperation, the more layers of nesting are required. 

With 3^^3 , only a single exponential power tower is created. 

Tetration is the hyperoperation with n=4, of course, and we define the first nontrivial 

NOPT structure to have OrderType=4 to make a suitable correspondence with 

tetration, where tetration is expressed in NEPT form. 

You could say that the "trivial" NOPT structure is just "n". 

Here, n is a small number expressed with a linear sequence of digits with standard 

interpretation, using SPN (Standard Positional Notation) and SPN implicitly contains 

the first 3 operations (+, *, exp). 

The first "nontrivial" NOPT structure is just "theta ) n". 

"theta" by itself is a "formal power tower", not a number as there is no height 

information. 

"theta ) n" obviously is a power tower, as the height of the power tower is given by n.  

 

By some kind of careful inspection argument, one can notice that there are many 

ellipsis values that have the same magnitude within a NOPT structure, for example 

where the ellipsis is equal to a “controlling SeedValue”. The “starting SeedValues” 

supply the height of the adjacent power tower, theta, in the linear NOPT component. 

The “controlling SeedValues” give the length of an ellipsis within a component of the 

NOPT structure. 

 

Also, by careful inspection argument, one can order ellipsis lengths by increasing 

order of magnitude.  Although it is very difficult to quantify “how much” longer one 

ellipsis is compared to another, the magnitudes increase very quickly as is the nature 

of fast-growing functions. 

 

Section 4.4 A method for generating Nopt structures 
 

Before I show a systematic method for generating Nopt structures I should say a few 

more things about Nopt structures. 

 

In a way, HEFTY NOPT Structures or H-(Ellipsis)-Fractal Type Nested Operational 

Power Towers are a kind of transitional number pattern-based structure between the 

finite and infinite realm. 

 

NOPT structures give a standard approach to looking at the bizarre world of numbers 

that straddle the finite and infinite divide. The induced Multi-layered Ellipsis 

Structure from a NOPT structure has similar component-connection structure to the 

well-known H-Fractal, given a corresponding degree of resolution. 
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Moreover, The H-fractal structure is emergent from the NOPT structure and guides 

the multi-layered nestedly embedded computational pathways. The computation starts 

at the bottom right corner and moves towards the top left corner. 

When the operation is not specified, NOPT structures are floaty and esoteric in nature, 

but nevertheless they still say something about the patterns arising from unlimited 

multi-layered nested recursion, with SeedValue being the standard stage-level phase 

transition marker. 

Regarding these phase transitions, a comparison can be made with the phase 

transitions associated with hereditary base n, where the base value is used at other 

exponent levels apart from the level of standard positional notation, resulting in a 

treelike number structure.  Perhaps, another comparison can be made with Cantor 

normal form for infinite ordinals. 

 

In the colored-square diagram representations I will give below, the computation 

starts at the bottom right corner and moves towards the top left corner. The colored-

square diagram approach provides a systematic way to generate Nopt structures. 

 

Nopt stuctures with OrderTypes 4 and 5 can be shown as follows: 

 

NOPT4

 
The red square represents the number n. 

The brown square represents a parenthesis. 

The blue square represents a theta symbol. 

 

n)θ
 

NOPT5

 
The brown squares represent a parenthesis. 

The green squares represent an ellipsis. 

 

n

n
(

)...θθ

 

 

 

Nopt stucture with OrderType 6: 

 

NOPT6

 
The red, brown, blue and green squares 

have same meaning as above. 

 

n

n

n

n

(

M
(

→←^

)...

)

)...

θθ

θθ
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Figure 4.4.1 Nopt structures with ordertypes 4 up to 9, where seed = n 

 

NOPT STRUCTURES IN ABSTRACT COLORED FORM

NOPT4 NOPT5 NOPT6

NOPT7 NOPT8

NOPT9
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With SeedValue = Theta}n, the colored-square pictures are a little different: 

Nopt stuctures with OrderTypes 4 and 5 are shown as follows: 

 

NOPT4

 
The red square represents the number n. 

The brown square represents a parenthesis. 

The blue square represents a theta symbol. 

 

n)θ
 

NOPT5

 
The brown squares represent a parenthesis. 

The green squares represent an ellipsis. 

 

43421
n

n

)

)...

θ

θθ
 

 

 

Figure 4.4.2 Nopt structures with ordertypes 4 up to 8, where seed = theta ) n 

 

NOPT STRUCTURES IN ABSTRACT COLORED FORM

NOPT4 NOPT5 NOPT6 SEED = THETA ) n

NOPT7 NOPT8
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A 3-stage process for generating Nopt(I+1) structure from Nopt(I) structure is shown 

below, and illustrated by the generation of Nopt10 from Nopt9. 

 

Figure 4.4.3 Stage1 of the 3-stage process generating Nopt(I+1) structure 

 

NONATION NOPT STRUCTURES IN ABSTRACT COLORED FORM

NOPT9 to NOPT10

KEY: SEED PARENTHESIS THETA ELLIPSIS

STEP ONE MAKE ANOTHER COPY OF NOPT9
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Figure 4.4.4 Stage2 of the 3-stage process generating Nopt(I+1) structure 

 

STEP TWO REPLACE CENTRAL CONTROLLING SEED VALUE WITH

ELLIPSIS HAVING (THE SAME) SEED LENGTH

ALLIGN ELLIPSIS/PARENTHESIS BLOCK TO MAKE IT

FLUSH ADJACENT WITH OUTER SEED VALUES
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Figure 4.4.5 Stage3 of the 3-stage process generating Nopt(I+1) structure 

 

STEP THREE SUPPLY SEED VALUE TO NEW CENTRAL

ELLIPSIS/PARENTHESIS BLOCK

ALLIGN STRUCTURES SO THE BROWN PARENTHESIS FROM CENTRAL

ELLIPSIS BLOCK IS FLUSH ADJACENT TO OUTER THETA VALUES
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Section 4.5 Magnitude inequalities inside Nopt structures 
 

The idea of visualising the ellipsis lengths in increasing magnitude order has been 

color-coded in the picture below.  Notice the increasing magnitudes of thetas as well.  

 

Figure 4.5.1 Magnitude inequalities inside Nopt10 structure 

 

NOPT STRUCTURE IN ABSTRACT COLORED FORM

NOPT10 KEY: PARENTHESIS

Using colors to order the increases in magnitude:

< < < < < < < < < < < < < < < < <
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V Applying Nopt Structures 
 5.1 The gi-sequence and g-subscript towers 

 5.2 Nopt structures and Conway chained arrows 

 

Section 5.1 The gi-sequence with g-subscript towers. 
 

The Seed(m)-Ackermann number sequence (with m>=3) is the sequence defined by: 

,...3,2,1,)( =↑= nmmnf n
 

This starts with exponentiation, tetration and so on with a fixed base seedvalue = m. 

Consider the Seed(3)-Ackermann-number sequence: 

33)( nnf ↑=  = <3^3, 3^^3, 3^^^3, …> 

Now consider starting with f(4) and applying functional powers: 

33)4( 4↑=f  = 3^^^^3 = g1 

33))4(( 33
4↑↑=ff  = 3(^3(^4)3)3 = g2 (using inline notation) 

)4(3f  = 3(^3(^3(^4)3)3)3 = g3 and so on. 

Usually, this notation would increase in the vertical direction, with the inline notation 

it increases in a line in the horizontal direction. These numbers form a sequence: 

g1, g2, g3, … (the gi-sequence) 

3(^4)3,  3(^3(^4)3)3,  3(^3(^3(^4)3)3)3, … 

Graham’s number comes from the sequence defined by 

40 =g  ,  331
kg

kg ↑=+  

With the functional power notation note that in particular, 

)4(64

64 fg =  and 

1),4( ≥= nfg n

n  

This is the formula linking f-superscripts with g-subscripts.  

Now, consider g-subscript towers. 

The “g_n” notation emphasises that subscript towers can be formed. 

g_1 = f^1(4) = f(4) = g1 

g_2 = f^2(4),  g_3 = f^3(4),  g_4 = f^4(4), … g_64 = f^64(4), … 

g_(g_1) = f^(g_1)(4) = f^(f^1(4))(4) 

g_(g_(g_1)) = f^(f^(f^1(4))(4))(4) 

)4()4(
)4(1

1

f

g

f

g fg =
 

etc… 

We can avoid having a tower of functional powers by defining: 

ngnh =)(   for  0≥n  

The function h  enumerates the gi-sequence. 

ngnh ggnhhnh === )(

2 ))(()(  
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The sequence 

...),1(),1(),1(),1( 432 hhhh  

Is the sequence that ends up making a g-subscript tower: 

...,,,,
1111
ggg ggg gggg

 

And we can use NOPT structures to abbreviate the notation. 

We can rewrite the following: 

“ g_(g_...(g_(g_1))…)  } where there are g_1 g’s ”  

into a NOPT structure with 

Theta = gst  [a formal g-subscript tower (or gst), finishing with g_1] 

Seed = g_1 and OrderType = 4 (there is only a seedvalue, parenthesis and theta) 

The standard way to present a NOPT structure, NS is 

NS = [OrderType, Theta, Seed] 

NS = [OT4, gst, g_1] = “ g_(g_...(g_(g_1))…)  } with g_1 g’s ” 

Notice, by the way that  NS = [OT3, gst, g_1] = g_1 

Then, if we want to, we could contemplate the sequence  <[OT(I), gst, g_1]>  (I>=3) 

So, hopefully, the relationship between the gi-sequence and g-subscript towers is now 

a little clearer. 

 

The relationship with Conway chains. 

From wikipedia, a Conway chain is defined as follows: 

1. The chain p  represents the number p . 

2. qp→  represents the exponential expression qp . 

3. XqX =+→→ )1(1  

4. qqpXXqpX →+→→→=+→+→ ))1(()1()1(  

It is clear that the sequence 

1,33 ≥>→→< nn  

is another notation for the Seed(3) Ackermann number sequence. 

It is not to hard to see that the sequence 

2,233 ≥>→→→< nn  

forms a sequence that corresponds with the sequence 

2),1( ≥nf n  where 33)( nnf ↑=  starting with 

333333))1(()1( 273332 31

↑=↑=↑== ↑fff  

(Please refer to Table 5.2.2) 

So the gi-sequence, g1, g2, g3, … that leads to Graham’s number has parallel growth, 

or keeps pace with, the sequence 2,233 ≥>→→→< nn . 

Also, the sequence 

2,333 ≥>→→→< nn  

has parallel growth, or keeps pace with, the sequence 

...,,,,
1111
ggg ggg gggg

. 

To see this is so, please refer to the next section. 
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Section 5.2 Nopt structures and Conway chained arrows. 
 

Table 5.2.1 Conway arrow number sequences 
 

3����3����2����2 

= 3�3�(3�3�1�2) �1 

= 3�3�(3�3) 

= 3����3����27 

 

3����3����3����2 

= 3�3�(3�3�2�2) �1 

= 3�3�(3�3�2�2) 

 

3����3����4����2 

= 3�3�(3�3�3�2) �1 

= 3�3�(3�3�3�2) 

 

3����3����5����2 

= 3�3�(3�3�4�2) �1 

= 3�3�(3�3�4�2) 

etc 

 

 

3����3����2����3 

= 3�3�(3�3�1�3)�2 

= 3�3�(3�3)�2 

= 3����3����27����2 

 

3����3����3����3 

= 3�3�(3�3�2�3)�2 

= 3�3�(3�3�27�2)�2 

 

3����3����4����3 

= 3�3�(3�3�3�3)�2 

= 3�3�(3�3�(3�3�27�2)�2)�2 

 

3����3����5����3 

= 3�3�(3�3�4�3)�2 

= 3�3�(3�3�(3�3�(3�3�27�2)�2)�2)�2 

etc 

 

3����3����2����4 

= 3�3�(3�3�1�4)�3 

= 3�3�(3�3)�3 

= 3����3����27����3 

 

3����3����3����4 

= 3�3�(3�3�2�4)�3 

= 3�3�(3�3�27�3)�3 

 

3����3����4����4 

= 3�3�(3�3�3�4)�3 

= 3�3�(3�3�(3�3�27�3)�3)�3 

 

3����3����5����4 

= 3�3�(3�3�4�4)�3 

= 3�3�(3�3�(3�3�(3�3�27�3)�3)�3)�3 

etc 

 

 

3����3����2����5 

= 3�3�(3�3�1�5)�4 

= 3�3�(3�3)�4 

= 3����3����27����4 

 

3����3����3����5 

= 3�3�(3�3�2�5)�4 

= 3�3�(3�3�27�4)�4 

 

3����3����4����5 

= 3�3�(3�3�3�5)�4 

= 3�3�(3�3�(3�3�27�4)�4)�4 

 

3����3����5����5 

= 3�3�(3�3�4�5)�4 

= 3�3�(3�3�(3�3�(3�3�27�4)�4)�4)�4 

etc 

 

Table 5.2.2 Linking the Conway arrow number sequences together 
 

So, using another notation… 

3����3����2����2 = 3����3����27 = 

33 27↑  

3����3����2����3 = 3����3����27����2 = 

 

27}
33

33
33

27

ON↑↑

↑
 

 

 

 

 

3����3����2����4 = 3����3����27����3 = 

27}
2)(33

22733
2)(33 →→→

→→→
→→→ ON  

 

3����3����2����5 = 3����3����27����4 = 

 

 

27}
3)(33

32733
3)(33 →→→

→→→
→→→ ON  
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These expressions above are Knuth arrow power towers and Conway arrow power 

towers.  We need to see them again for comparison later on. 

Let’s see how to interpret the Conway arrow power towers by converting them to 

Knuth arrow power towers. 

Conway chained arrow notation is usually presented with inline notation, however, it 

is still well-defined to consider them as power towers.  The amount of inward-

outward nesting is translated into height (or depth if you like) of the power tower.  It 

can be observed that, at least for small Conway chained arrows of length = 4, we can 

convert them into Knuth arrow power towers but Conway chained arrows grow so 

fast, it is only possible to do this for Conway chained arrows of length = 4.  For the 

first non-trivial length = 5 Conway chained arrows, the ability to convert them to 

multi-layered nestations of Knuth arrow power towers runs out of steam. This can be 

made clearer with the help of Nopt structures. 

 
3����3����2����2 = 3����3����27 = 

 

33 27↑  

 

3����3����2����3 = 3����3����27����2 = 

 

27}
33

33
33

27

ON↑↑

↑
 

 

Now, consider the Knuth arrow power tower: 

 

27}
33

33
33

27

ON↑↑

↑
 

This has Nopt structure n)θ  where “theta” is the “formal” Knuth arrow power tower 

and n=27 is the seed value describing the number of layers, including the very top 

layer consisting of the number 27. 

 

Now consider: 
3����3����2����4 = 3����3����27����3 = 

 

27}
2)(33

22733
2)(33 →→→

→→→
→→→ ON  

 

This is equal to the expression below: 

27

27}
33

33
}

33

33
33

27

33

27

ONON L
↑↑ ↑

↑

↑

↑
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And this expression has Nopt structure 
n

n
(

)...θθ
  having OrderType=5. 

 

Now consider: 
3����3����2����5 = 3����3����27����4 = 

 

 

27}
3)(33

32733
3)(33 →→→

→→→
→→→ ON  

 

 

This is equal to the expression below: 

27

27}
33

33
}

33

33

27}
33

33
}

33

33

27}

33

27

^

33

27

33

27

33

27

ONON

ONON

L

M

L

(

↑↑

↑↑

↑

↑
→←

↑

↑

↑

↑

↑

↑

 And this expression has Nopt structure with OrderType=6. 

n

n

n

n

(

M
(

→←
^

)...

)

)...

θθ

θθ

    

 

Let }...}3,2,1{:333{ ∈→→→= nnA  

Define a projection function on elements of A: 

nnp =→→→ )333(  

 

Theorem 1 

))333(()333( nNaroptOrderTypenp →→→=→→→  

 

What this theorem is saying is that if you convert n→→→ 333  into a Nested Knuth 

arrow power tower (or Naropt) then the last value of the Conway chained arrow keeps 

pace with the OrderType of the associated Naropt structure. 

In general, n→→→ 333  is a Naropt with OrderType = n + 2. 

(The “plus 2” is because tetration (hyperoperation=4) uses 2 Knuth arrows.) 
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Corollary 1.1 

The upshot of this is that if you want to convert Conway Chained arrows to Naropt 

structures this technique runs out of steam quite early on with the sequence 

∞
=>→→→< 1333 nn  

This is due to the very fast growing nature of Conway Chained arrows. 

Considering the smallest non-trivial length=5 Conway Chained arrow, that is to say: 

)33(333)333(333

1)21333(33322333

3↑→→→=→→→→→=

→→→→→→→→=→→→→
 

Is a Naropt with OrderType = )33( 3↑  + 2.  The OrderType is so large that the 

recursion structure using Knuth arrow power towers has effectively run out of gas. 

 

Corollary 1.2 

The seed(m) Ackermann number sequence does for Nept structures what the sequence 

∞
=>→→→< 1333 nn  does for Naropt structures. 

So in the rarefied realm of Nested Arrow power tower structures, this sequence has a 

similar parallel recursion structure with the recursion structure for the seed(m) 

Ackermann number sequence converted into nested exponential power towers. 
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VI Glossary 
 

Ackermann numbers 
The sequence of numbers:  1^1, 2^^2, 3^^^3, 4^^^^4, …, n^(n)^n, … 

 

base(3) Ackermann number sequence: 3^3, 3^^3, 3^^^3, 3^^^^3, …. 
The first 3 terms of this sequence (that is, 3^3, 3^^3 and 3^^^3) are fairly easy to 

work out from the definitions.  However 3^^^^3 is more involved.  These numbers are 

similar to the Ackermann numbers. 

 

ellipsis 
Dotdotdot  (…) 

 

formal power tower 
A power tower that is unevaluated because height information is missing. 

 

the word “formal” 
Mathematicians describe “fomal power series” with a particular meaning. 

In a similar way, ”formal power tower” describes a process when we don’t know if 

and when it will halt.  The use of seedvalues takes the formal power towers and 

grounds them, initiating them, with small numbers. 

 

gi-sequence 
The sequence starting with g1=3^^^^3, g(k+1)=3^g(k)^3 and g64= Graham’s number. 

 

Graham’s number construction 
A source of fascination and inspiration. A desire to understand g1=3^^^^3  led me to 

thinking about NEPT and NOPT structures.  To work out “3 hexated to 3” requires 

some effort.  A description of “4 hexated to 4” can be found at Wikipedia article 

“Ackermann function” 

 

g-subscript towers  
A number of the form g_(g_(g_...(g_(g1)…) where the number of the g’s in the 

expression is specified. 

For example: g_(g_(g_...(g_(g1)…) } where there are g1 g’s. 

 

height of power tower  
A natural number that says how many numeral symbols are in the power tower. 

The height of a power tower may be a small number or require a nested power tower. 

 

hyperoperation hierarchy 
Continuing the operations that start with addition, multiplication, exponentiation, to 

tetration, pentation and so on. 
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in theory 
This is a way of reminding the reader that the issue of a computation halting may 

become so lengthy that it can only be understood in stages, with assumptions about 

what can reasonably be ignored in an information-presentation by the writer and the 

reader. 

 

in principle 
A synonym for “in theory” 

 

layered nested expression, multi-layered nested expression 
The transitions between nested expressions, layered nested expressions and multi-

layered nested expressions are something that NEPT and NOPT structures can 

describe quite nicely. 

 

minimal symbolic notation 
By considering a symbolic expression that may be folded and copied, a doubling 

process occurs.  To keep the notation manageable, a minimal symbolic notation needs 

to be described.  The minimal symbolic notation should be efficient, and needs to 

capture the essential information. 

 

multi-layered Nested Exponentional Power Towers 
When a number is huge, many layers of nestation are required 

 

NEPT 
Nested Exponential Power Tower 

 

NOPT 
Nested Operational Power Tower 

 

NAROPT 
Nested Arrow Power Tower or Nested Knuth Arrow Tower 

 

omega and epsilon 

There are the symbols ω  (or w) for omega and ε  (or e) for epsilon. 

These numbers are the same as described in set theory, the theory of infinite ordinals. 

 

power tower 
The typical example uses exponentiation, and is essentially written in the vertical-

rightwards diagonal dimension.  To be more precise, it is an up-right-diagonal 

sequence of numerals and ellipsis to represent continuation and there is clear 

information about the height of the power tower. 

 

PVN 
Place Value Notation. The other name for Standard Positional Notation. 
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seedvalue 
A small number that starts a nested power tower or says how long a starting ellipsis is. 

 

small number 
A number that can be expressed using SPN (or PVN) notation 

 

SPN 
Standard Positional Notation 

 

controlling seed 
A small number that says how long an initial ellipsis in a component is. 

 

starting seed 
A small number that initiates a linear nesting of power towers and describes the height 

of the first power tower in the linear nesting. 

 

subscript power tower or subscript tower 
Some classic examples are:  

g_(g_(g_...(g_(g1)…) } where there are g1 g’s 

e_(e_(e_...(e_(e0)…) } where there are w e’s 

 

tally 
Repeated Unary operation on a basic symbol to have the written effect of 

distinguishing and pointing at multiple items. 

 

theta 

A Greek symbol, θ , used as part of minimal symbolic notation in Nopt structures. 

It represents a formal power tower. 

 

top-down and bottom-up methods 
There is top-down tetration and bottom-up tetration. 

Top-down is the default method as it produces a new operation. 

Some authors prefer the terms higher and lower hyperoperators. 

 

UDC 
Unbounded Descriptive Capability. 

We are free to use a wide range of notations with interpretations to express a counting 

number.  “Counting number” emphasises the magnitude aspect that “in theory” could 

be represented by a tally.  Counting numbers are whole numbers. They are not 

rational numbers, reals or complex numbers.  Natural numbers include small numbers, 

as well as a wide range of numbers that require varying degrees of complexity and 

effort to be described in a well-defined way. 

 

Well-defined 
Expressed clearly and unambiguously, assuming the information can be 

communicated and understood by other mathematicians. 
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VII Further Reading and Weblinks (Draft version) 
 

While the internet has abundant resources covering the diverse spectrum of 

mathematical ideas, there seems to be, at the time of writing this paper, little 

information, directly connected with the topic of this paper. 

There are many researchers, amateur and professional who have come up with fruitful 

ideas that can interact, furnish and exemplify the ideas in this paper. 

Wikipedia and Wolframscience are the big portals of math information, with an 

incredible selection of mathematical concepts. 

There are various math forums in the foundations of maths and theory of computer 

science that have interesting discussions and ideas. 

This is a list of website links and papers with some brief information (Draft version) 

 

Weblinks 

 

Large numbers 

Robert Munafo 

http://www.mrob.com/pub/math/largenum.html 

Robert Munafo has done a great job educating the public about the subject of large 

numbers in a mature and thoughtful way 

 

Big Number Central 

Jonathan Bowers 

http://www.polytope.net/hedrondude/bnc.htm 

 

Tetration and higher-order operations on transfinite ordinals 

Quickfur 

http://math.eretrandre.org/tetrationforum 

 

Introduction to Nept and Nopt structures 

Mike Smith (aka Alister Wilson, Dolti Fantara) 

http://math.eretrandre.org/tetrationforum 

 

Making and Understanding Large Numbers 

Peter William Hurford 

http://www.greatplay.net/essays/table-of-contents 

 

Proof that G>>M 

Graham's number G and the Moser number M are both humungously large, but G is 

very much larger than M.  Tim Chow's proof outline can be seen at: 

http://www-users.cs.york.ac.uk/susan/cyc/b/gmproof.htm 

 

My number is bigger! discussion at xkcd.com 

http://forums.xkcd.com/viewtopic.php?f=14&t=7469&start=1160 

Entertaining debate about the subject 

 

Online Encyclopedia of Integer Sequences 

www.OEIS.com 

A valuable and huge collection of number sequences 
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Papers 

 

Catalan Numbers 

Tom Davis 

 

Arborescent Numbers: 

Higher Arithmetic Operations and Division Trees 

Henryk Trappmann 

 

Goodstein's function 

Andres Eduardo Caicedo 

California Institute of Technology 

 

Exponentials reiterated 

R. Arthur Knoebel 

Department of Mathematics, New Mexico State University 

 

An overview of the ordinal calculator 

Paul Budnik 

 

International Journal of Algebra 

Number Theories 

Patrick St-Amant 

 

Parabola Volume 40, Issue 1 (2004) 

On Iterated Exponentiation – the Hyperexponentials 

Sean Stewart 

 

Array Notations for Super Huge Numbers 

Chris Bird 

 

On the Independence of Goodstein’s theorem 

Justin T Miller 

 

An extremely sharp phase transition threshold 

for the slow growing hierarchy 

Andreas Weiermann 

 

Predicativity 

Solomon Feferman 

 

Alternative Set Theories 

M. Randall Holmes 

 

Realizing Levels of the Hyperarithmetic Hierarchy 

as Degree Spectra of Relations on Computable Structures 

Denis R. Hirschfeldt and Walker M. White 

 


