Extrapolated Faá Di Bruno's Formula - Printable Version +- Tetration Forum (https://math.eretrandre.org/tetrationforum) +-- Forum: Tetration and Related Topics (https://math.eretrandre.org/tetrationforum/forumdisplay.php?fid=1) +--- Forum: Mathematical and General Discussion (https://math.eretrandre.org/tetrationforum/forumdisplay.php?fid=3) +--- Thread: Extrapolated Faá Di Bruno's Formula (/showthread.php?tid=1103) Extrapolated Faá Di Bruno's Formula - Xorter - 11/19/2016 Here is how to evaluate the nth derivative of f o g: https://en.wikipedia.org/wiki/Faà_di_Bruno's_formula#Combinatorial_form http://www.maa.org/sites/default/files/images/upload_library/22/Ford/Johnson217-234.pdf My question is that: Is it possible to get a formula for integrate f o g dx? Where integrating means the -1st derivative. Can we extrapolate this formula to the negative numbers? RE: Extrapolated Faá Di Bruno's Formula - Xorter - 11/19/2016 What if I say the next: N=-1 int f o g dx = ? -1b[-1] = -1 b[-1] = 1 k = 1 int f o g dx = (-1)!/1! f' o g * (g^(-1)/(-1)!)^1 = f' o g * int g dx But it does not work ... Why?